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ABSTRACT

This report describes electric utility capacity expansion and energy production models developed for energy
policy analysis.  The models use the same principles (life cycle cost minimization, least operating cost
dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning
tools, but are faster and simpler.  The models were not designed for detailed utility capacity planning, but
they can be used to accurately project trends on a regional level.  Because they use the same principles as
comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules
used in present policy analysis tools.  They can be used to help forecast the effects energy policy options
will have on future utility power generation capacity expansion trends and to help formulate a sound
national energy strategy.  The models make renewable energy source competition realistic by giving proper
value to intermittent renewable and energy storage technologies, and by competing renewable technologies
against each other as well as against conventional technologies.
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INTRODUCTION

In 1990 and 1991, the U.S. Department of Energy formulated the first National Energy Strategy
(U.S. Department of Energy, 1991). National energy strategies will become increasingly
important as the world's fossil energy resources are depleted and as emerging nations increase
their demand for these diminishing resources to fuel economic growth.  The strategies will also be
key elements in addressing environmental and economic competitiveness issues associated with
developing and using energy sources.  Formulating sound strategies will require using sound tools
to project the likely effects energy strategy policies will have on energy production and
consumption.

This report describes the electric utility capacity expansion and energy production models,
collectively referred to as CEEP (Capacity Expansion and Energy Production), developed at
Sandia National Laboratories.  The models were developed as part of a project sponsored by the
Department of Energy's Office of Utility Technologies and Office of Planning and Assessment. 
The CEEP models are designed to help forecast the effects energy strategy policies will have on
future electric utility capacity expansion trends.  A primary objective of our modeling task was to
make renewable energy source competition realistic by giving proper value to intermittent
renewable and energy storage technologies, and by modeling their competition against each other
as well as against conventional technologies.

The CEEP models use the same principles as comprehensive utility capacity planning tools:

1. Power from intermittent sources is dispatched when it is available.

2. Storage units are dispatched using a strategy which minimizes system operating cost.

3. Power from dispatchable sources is dispatched based on merit order; that is, loads are
met using the lowest operating cost sources.

4. Existing capacity, forced outages, scheduled outages, and required reserve margin are
an integral part of capacity expansion decisions.

5. Capacity expansion is determined by finding the minimum total future life cycle cost
system which satisfies the load.

The CEEP models are faster and simpler than comprehensive utility capacity planning tools. 
Speed and simplicity are important because the models will be used in parametric studies where
multiple runs in short periods of time are required.  The models are not designed for detailed
utility capacity planning.  They are designed to accurately forecast trends on a regional level.
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Several comprehensive electric utility capacity expansion planning models have been developed,
and some give proper value to intermittent sources.  One of these is EGEAS (Electric Generation
Expansion Analysis System) developed by EPRI (Electric Power Research Institute, 1982). 
EGEAS is used extensively by many of the largest U.S. utilities and is an excellent tool for
planning capacity expansion for an individual utility, but it is not suitable for policy analysis on a
regional level because of the computation time and detailed input required.  Also, it does not
account for cost diversity, a spread in cost or perceived cost among utilities.  Cost diversity
allows a technology to receive some market share even though its most likely cost is higher than
those of competitors.  CEEP allows for cost diversity.  Although not practical for parametric
studies, comprehensive models like EGEAS will be important for policy analysis because they can
be used to check the accuracy of less comprehensive models.

Because they use the same principles as comprehensive utility capacity expansion planning tools,
the CEEP models are more realistic than utility modules used in present policy analysis tools, such
as the electric sector in FOSSIL2 (Now named IDEAS).  Previous national energy strategy
projections have been based on FOSSIL2  (AES, 1991; Aronson, 1991), but FOSSIL2's electric
utility module does not follow utility capacity expansion principles and may not make reliable
capacity expansion projections.  A few of FOSSIL2's shortcomings are listed below:

1. FOSSIL2 does not adequately consider the difference between dispatchable and
intermittent sources.  An intermittent source does not have the same value to a utility
as a dispatchable source, even though they have equal busbar energy costs, because
intermittent sources may not be available when power is needed.

2. FOSSIL2 artificially divides a load duration curve into two areas: peak and a
combination of base and intermediate.  A logit apportionment is used to determine the
market share of competing sources within each area.  Competing sources compete at
different capacity factors.  Since sources do not compete at the same capacity factor,
they do not provide the same service.  For the logit apportionment to be valid, all
competitors must provide the same service; thus, the competition is not valid and may
not give rational results. 

3. FOSSIL2 assumes a uniform 20% reserve margin.  Using a fixed reserve margin does
not accurately account for changes in a load duration curve's shape and consequent
changes in reserve margin requirement caused by the introduction of intermittent
sources, demand management, or storage.

4. FOSSIL2 does not treat intermittent sources as negative loads.  The negative load
methodology is generally used for utility capacity planning and is an analytically sound
way to alter a load duration curve in response to the addition of intermittent energy
sources.

The CEEP capacity expansion and energy production models were developed to be used as
modules in more general utility models.  Two utility models developed at Sandia incorporate the
CEEP models as modules.  One, REPAM, is a detailed regional model parameterized for
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California, and the other TFRM is a much less detailed but geographically more general model for
the ten federal regions comprising the United States.  These models use what we call a utility
driver module which steps through time; provides load, asset, and economic data; calls upon the
capacity expansion model at each time step to provide capacity expansion projections; and calls
upon the energy production model to estimate the energy generated by each generation
technology.  The energy production model is called upon by both the utility module driver and the
capacity expansion model.  The capacity expansion model calls upon the energy production model
to generate operating cost information.

In summary, CEEP is simpler and faster than comprehensive utility capacity expansion planning
tools like EGEAS, and it is more realistic than existing utility modules currently used for policy
analysis like the utility sector in FOSSIL2.  It accurately projects capacity expansion trends (as
will be seen in the validation section of this report) and will be a valuable tool for energy policy
analysis and for helping to develop sound National Energy Strategy policies.  An overview
description of the models is given in the following sections, and a detailed mathematical
description is given in Appendix A.
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ENERGY PRODUCTION MODEL DESCRIPTION

The energy production model operates in three steps.  First it dispatches intermittent source
power by treating intermittent sources as negative loads; second, it optimizes the use of storage to
minimize system operating cost and dispatches storage power by treating discharge power as a
negative load and charge power as a positive load; and third, it dispatches dispatchable source
power using merit order.  A utility driver module supplies the energy production model with an
hourly load profile.  The driver module also supplies normalized hourly power generation profiles
for each intermittent technology.  Note that the model treats intermittent sources, dispatchable
sources, and energy storage separately.  It does not presently incorporate sources with dedicated
storage such as solar central receiver with salt storage systems.

Intermittent Source Energy Production

The hourly power generated by an intermittent source is equal to its rated capacity multiplied by
its normalized generation profile.  A "net" load profile is generated by subtracting the hour-by-
hour power production of each intermittent source from the given load profile; thus, an
intermittent source is treated as a negative load.  Since intermittent source generation profiles are
controlled by meteorological conditions and not by utilities, they are dispatched when available,
and treating them as negative loads is appropriate.  Criticisms of the negative load method are
generally rooted in valid arguments concerning statistical variation.  Hourly values of intermittent
source power are not instantaneous.  They are averages over the hour.  Furthermore, monthly or
weekly averages of hourly averages are often used for analysis to avoid using a full year's worth
of hourly data.  Averaging may destroy statistical variation, and statistical variation is needed to
give proper capacity value to an intermittent source.  Averaging tends to over-value intermittent
source capacity.  While simple averaging introduces systematic errors, the number of intermittent
source power generation data points can be reduced and intermittent sources can be treated as
negative loads, without introducing significant errors, if adequate statistical variation is
maintained.  This subject is discussed further in Appendix B.

Storage Energy Production

The use of storage is optimized to minimize the utility's operating cost.  The general rule is that
the operating cost of the source displaced must be greater than the operating cost, divided by
storage efficiency, of the source used for recharge.  To optimize storage use, the model arranges
the net loads for a single day from largest to smallest.  The largest load is paired with the smallest.
 The second largest load is paired with the second smallest and so on until all 24 loads have been
paired.  Starting with the highest-lowest pair, storage power is subtracted from the high member
of the load pair (discharge), and power divided by efficiency is added to the low member of the
pair (recharge).  The marginal value of energy displaced (which depends on the lowest operating
cost technology displaced) is compared to the marginal value of energy used for
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recharge (which depends on the highest operating cost technology used for recharge).  If the net
marginal value is positive, we move to the next load pair.  If the net marginal value is negative, we
reduce the power supplied by storage until we reach a net marginal value which is positive.  This
process avoids displacing an energy source and later recharging at an efficiency loss with the same
source.  It also avoids displacing one source and recharging with a higher operating cost source. 
We step down the load pairs until energy storage capacity is reached or until storage use is no
longer cost effective.

This process is nearly but not entirely optimum.  It is not entirely optimum because we have
restricted discharge and recharge decisions to hour pairs and do not optimize over multiple hours.

The above process is repeated for each day to generate a net load profile.  At this point, the net
load profile accounts for the gross load, intermittent source generation, and storage discharge and
charge.

Dispatchable Sources

The energy production model calculates the energy generated by each dispatchable source.  The
energy generated by each source is determined by minimizing the system's total operating cost. 
We start with a net load profile and develop a net load duration curve from it by arranging the
individual loads in decreasing order, resulting in a curve similar to that in Figure 1.  The vertical
axis values are power, or load.  The horizontal axis values have been transformed from hours into
that fraction of the year in which power exceeds the associated vertical axis value.  The area
under the net load duration curve is the total energy, in kW-Yr, which must be supplied by the
dispatchable technologies.  Technologies (or sources) are arranged in merit order.  That is, the
ones with the lowest operating cost are dispatched to operate at the highest capacity factor and to
provide the most energy.  This scheme minimizes the utility's operating cost.  The merit order for
a hypothetical system is illustrated in Figure 1 which shows a net load duration curve with the
utility's capacity arranged in merit order beneath it.  For this example, nuclear plants have the
lowest operating cost and are dispatched first.  The point where the nuclear line intersects the
vertical axis is equal to nuclear rated capacity multiplied by its availability (1 - forced outage rate).
 Capacity has been derated by availability because the nuclear plants' average power over time will
be equal to their rated capacity multiplied by availability.  Coal 1 has the second lowest operating
cost and is dispatched second.  In this example, nuclear power is used at all times.  Coal 1 and
Coal 2 are next in the merit order and are used most of the time, but there are times when their
full capacity is not needed to meet the utility's load.  Gas combined cycle plants are next in the
merit order followed by gas combustion turbines.  Combustion turbines are used only when the
combined efforts of the other plants are not sufficient to meet the utility's load.  They generate the
least energy because their operating costs are highest.  Keep in mind that this is a hypothetical
example and that other technologies may be included in the merit order and their



6

Figure 1.  Load Duration Curve and Merit Order

relative positions in the merit order may be different than illustrated here.  The energy generated
by each technology is the area shown in its band under the load duration curve; however, it may
be necessary to subtract energy to account for scheduled maintenance outages.  The algorithms
used to compute energy generation, including the effects of maintenance outages, are given
below.

The maximum energy a technology (technology i) can generate, Eim, is given by Equation 1.  Eim

is the maximum energy that can be generated by technology i since it is the product of technology
capacity Pi, and the fraction of time the technology is available to operate (1 - αi)(1 - βi).  Since
Eim is in kW-yr, we have not multiplied by operating time.

Eim = Pi(1 - αi)(1 - βi)  , (1)

The energy a technology is called upon to generate, Eig, is given by Equation 2 and is equal to the
area of the load duration curve below its derated capacity value minus the energy generated by
preceding technologies.

                                                                      Ui                          i-1

                        Eig = II u(λ) d(λ) - 3 En                                               (2)
                                                                      0                       n=1

                                                         i

                                                           Ui = 3 Pn(1 - βn)  if less than Λ, (3)
                                                                   n=1

                                                                = Λ otherwise ,
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the energy actually generated, Ei, is the smaller of these two values.

            Ei = the smaller of Eim and Eig , (4)

 

where: Ei   is energy generated by the ith technology in kW-Yr,

Pi   is the rated capacity of the ith technology in kW,

αi   is the fraction of time lost for scheduled maintenance,

βi   is the fraction of time lost to forced outages,

Ui   is total derated capacity up through technology i in kW,

u(λ) is the inverse of the load duration curve function,

Λ is the peak system load (kW).

The average maximum power that technology 1 can generate is P1(1 - β1) since, on the average,
fraction β1 of its units are not available due to forced outages.  Notice that this availability does
not include scheduled maintenance because we assume that scheduled maintenance is performed
when the unit is not needed to meet the load.  Technology 1 is called upon to produce energy
equal to E1g, the area under the inverse load duration curve between power level 0 and P1(1 - β1).
Scheduled maintenance may prevent it from producing that much energy if there is not enough
time to service its units when demand is low.

The inverse load duration curve, u(λ), has power level as the independent variable and time
(fraction of the year) as the dependent variable.  E1 is the lesser of E1m and E1g and is the energy
generated by technology 1.  Technology 2 is called upon to generate the energy under the load
duration curve between power levels 0 and P1(1 - β1) + P2(1 - β2) minus the energy generated by
technology 1.  Like technology 1, it is limited by its combination of scheduled and unscheduled
outages.  We can repeat this process with subsequent technologies until the load has been
satisfied.  Some units may not produce energy regularly but must still exist to satisfy the system's
reserve margin.

This dispatching model which derates capacity and integrates under the load duration curve is an
approximation to reality.  A probabilistic method such as the Baleriaux method used in EGEAS is
more rigorous.  We compared the two methods (Appendix B) and concluded that while our
integration method underestimates the energy generated by peaking plants, it is sufficiently
accurate for policy analysis.
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CAPACITY EXPANSION MODEL DESCRIPTION

The capacity expansion model receives utility generation asset, load, and technology cost
information from the utility driver module and selects the combination of new dispatchable,
intermittent, and storage capacity which will minimize the sum of levelized annual capital cost for
new plants plus total levelized annual future operating costs for all plants.  This minimization will
result in the lowest electrical generation cost for the utility system.  A flow diagram of the model
is shown in Figure 2.

Figure 2. Capacity Expansion Module

Capacity expansion starts with a trial set of intermittent and storage capacity additions. 
Intermittent source generation is subtracted from the utility's load profile.  Storage operation is
optimized with generation subtracted from and recharge added to the utility's load profile.  The
model organizes the resulting net load profile into a load duration curve.  Next, the model selects
the mix of dispatchable technology capacity additions which minimizes the sum of levelized annual
capital cost for new assets plus levelized annual operating cost for all (new and existing) assets
accounting for cost diversity (cost uncertainty). 

The model selects another trial set of intermittent and storage additions and repeats the above
process.  Trial sets of intermittent and storage additions are selected using a pattern (Haskell,
1978) search procedure.  The search is repeated until the set of intermittent, storage, and
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dispatchable technology additions which minimizes total system cost is located.  The resulting set
of new capacity additions is returned to the utility driver module.

Minimum Levelized Annual Cost

The object of the capacity expansion model is to find the set of new capacity additions which
minimizes the sum of levelized annual capital costs for new capacity additions plus levelized
annual operating cost for all (new and existing) capacity.  Capital cost is expressed as levelized
annual cost per unit of capacity ($/kW-Yr).  Operating cost is expressed as levelized annual cost
per unit of electrical energy generation ($/kW-Yr).  Annualized capital cost and annualized
operating cost for each technology are supplied by the utility driver module.  The dispatching
model, described above, supplies the annual electrical energy generation for each technology.

Total system future life cycle cost is given by Equation 5 and can be minimized rigorously by
optimizing the technology mix for new capacity.

                                                      C = 3 [CciBi + CoiEi(Bi + Fi)], (5)
                                                               i 

where: C   is the total future system levelized annual cost ($/Yr),

Cci is the levelized annual capital cost of technology i ($/kW-Yr),

Bi  is the new capacity of technology i (kW),

Coi is the levelized operating cost of technology i ($/kW-Yr),

Ei  is the energy generated by technology i (kW-Yr/kW-Yr), and

Fi is the existing capacity (including capacity under construction)
   of technology i (kW).

Conceptually, the problem is to find the set of Bi values which minimizes C and, at the same time,
satisfies the utility's load.

Net Load, Load Duration Curve, and Reserve Margin

The model starts with an hourly load profile provided by the utility driver module.  A trial set of
new assets for intermittent sources and storage is selected and intermittent power generation for
both existing and trial new assets is subtracted from the load profile.  Storage discharge is
subtracted from and recharge is added to the profile as described in the dispatching section for
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both existing and trial new storage.  The resulting net profile is organized into a net load duration
curve.

We define a modified "reserve margin," r, in Equation 6.

r = 3(1 - βi )Pi / Λ  , (6)
                                                                     i

where βi is forced outage rate for dispatchable technology i,

Pi is rated capacity (kW) for dispatchable technology i, and

Λ  is peak load in kW.

It is a modified reserve margin because standard definitions of reserve margin do not include
forced outage rates.

We derived an expression, Equation 7, for the required value of modified reserve margin.

r = 1 + .25(Λa/Λ)2.7  , (7)

where Λa is the utility's average load.  Finding accurate values of reserve margin requires finding
the total generation capacity which satisfies the utility's loss of load probability or unserved energy
requirement.  Our algorithm approximates a loss of load probability analysis.  We derived it by
computing the generation capacity (and thus reserve margin) needed by a hypothetical utility to
satisfy a 0.0002 loss of load probability.  The utility was composed of a conventional generation
capacity mix representative of the United States mix.  Modified reserve margin was computed for
a variety of exponential load profiles and a PG&E profile, and correlated to the ratio of average to
peak load.  Equation 7 is the result of fitting this data.  The correlation was adequate.  For all of
the load curve shapes we tried, when Λa approached Λ, modified reserve margin, r, always
approached 1.25 which we used as an upper bound.

To account for reserve margin, we simply multiply the net peak load, Λ, by r, the modified reserve
margin.  This forces our expansion algorithm to satisfy the reserve requirement by setting Σ(1 -
βi)Pi equal to rΛ, and it allows the algorithm to optimize new capacity taking the reserve
requirement into account.  Negligible energy is added by increasing the peak load, so the method
does not significantly affect dispatching.  The simplified treatment of reserve margin was done to
avoid the time consuming task of computing loss of load probability or unserved energy for every
set of capacity additions tested.  It saves significant computing time.
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Dispatchable Technology Expansion Optimization

The model's next step is to find the set of dispatchable sources
(including dispatchable renewable sources such as geothermal and
biomass) which minimizes levelized annual system cost for the
given trial set of new intermittent sources and storage.  We have
developed a dispatchable technology expansion optimization
algorithm which is unique to the CEEP model.  To perform the
optimization, the area under the net load duration curve is
divided among the existing technologies arranged in merit order
with the lowest operating cost technologies at the bottom and the
highest at the top.  The new capacity required, called the
capacity "gap," is equal to the difference between the peak net
load (adjusted for reserve margin) and the total existing derated
dispatchable capacity.  New capacity can be added at the
interface between any two existing technologies.  Figures 3 and 4
illustrate this for a hypothetical three technology utility.  New
capacity can also be divided equally among the interfaces of
existing technologies.  This option is illustrated in Figure 5. 
The model inserts new capacity between each pair of existing
technologies in turn and determines the mix and cost of new
capacity for each gap location.  The new capacity mix for a
particular gap location is determined by a logit apportionment
based on each technology's derated levelized annual cost at the
capacity factor for the particular gap location.  The logit
apportionment is defined by Equation 8.               

                                               (Ccidi + Coif)
γ

                                              Bi = G  ———————— (8)

                                        3 (Ccidi + Coif)
γ

where  Bi  is the new capacity for technology i in kW,

di  is the technology's derating factor which is a function of capacity

     factor and is defined in Appendix A,

G   is the total capacity in kW needed,

Cci is the levelized annual capital cost of technology i in $/kW-Yr,

Coi is the operating cost in $/kW-Yr of technology i,

f   is the capacity factor for the gap, and

γ   is the logit parameter that defines cost variance (we use -10).
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Figure 3.  Capacity Expansion Gap Located Between Base and Intermediate

Figure 4.  Capacity Expansion Gap Located Between Intermediate and Peak
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Figure 5.  Capacity Expansion Gap Distributed Equally

The logit gives the largest capacity expansion share to the technology with the lowest capital plus
operating cost at that capacity factor.  The logit accounts for cost diversity by giving all
competing technologies a share of the expansion.  Technologies which are close in cost to the
lowest cost technology will receive relatively large shares while significantly more expensive
technologies will receive much smaller shares.  Notice that, in this application, the logit
apportionment competes all technologies at the same capacity factor; thus, each competing
technology provides the same service.  This is a consistent application of the logit in contrast to
the FOSSIL2 application discussed earlier.

Once new assets for a particular gap location are found, total levelized annual cost for each gap
location is calculated using Equation 5 where the energy for each technology is calculated using
the dispatching model.  Total system levelized annual cost is calculated for each gap location and
the gap location with the lowest total cost is selected.  If the utility system is short on base
capacity, the algorithm will tend to select a "gap" with a high capacity factor.  If peak capacity is
needed, a low capacity factor "gap" will be selected.  If the utility system is balanced, the
distributed "gap" will tend to be selected.  This algorithm does not minimize system cost at each
individual time step, but it does tend to minimize system cost over several time steps.  It is fast
and simple, but it tracks a true optimization algorithm developed by Sherali (1985).  A
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comparison of this method with the Sherali method (modified to account for cost diversity using a
Monte Carlo method) is presented in Appendix C.

Intermittent Technology and Storage Expansion Optimization

The above dispatchable capacity optimization gives a minimum cost set of new dispatchable
technology capacity additions for the specific trial set of intermittent technology and storage
capacity values used.  The total system is optimized using a pattern search procedure to identify
new trial sets of intermittent technology and storage capacity additions.  The optimum set of
dispatchable technology additions is found for each intermittent trial set and the process is
repeated until the minimum levelized annual cost for the whole system is found.  When the
optimum system is identified, intermittent and storage capacity values are adjusted to account for
price diversity.  This adjustment is described in Appendix A.



15

MODEL VALIDATION ACTIVITIES

Capacity expansion model validation activities to date have consisted of critiques by personnel at
the U.S. Department of Energy's Office of Utility Technologies, the National Renewable Energy
Laboratory, and the Electric Power Research Institute; comparison of individual algorithms with
more rigorous algorithms as noted above and described in Appendix C; and comparison to a test
case run on EGEAS.  EGEAS (Electric Generation Expansion Analysis System) is a utility
capacity planning tool developed by the Electric Power Research Institute and used by many of
the U.S.'s largest utilities.  EGEAS is a very comprehensive model, and the two models are very
different in the level of detail required for operation.   CEEP is designed for regional analysis and
aggregates similar generation units while EGEAS operates on individual units.  CEEP uses cost
diversity, EGEAS does not.  There are many other differences, but the comparison demonstrated
that projected trends for the two models agree very well.  We saw differences in timing for the
addition of particular technologies, but, over a thirty year period, both models added roughly the
same capacity for each type of source.  A more detailed discussion of the comparison is given in
Appendix D.

In November, 1993, DOE/OUT sponsored a critical review of the TFRM which uses CEEP as its
core.  The review panel included five experts on electric utilities and utility modeling.  Their
summary (DOE 1994) of findings is included as Appendix F.
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CONCLUSIONS

We have developed electric utility capacity expansion and energy production models, collectively
referred to as CEEP, for energy policy analysis.  The CEEP models fill a gap between current
very general energy models which do not adhere to basic utility capacity expansion principles
(such as the electric sector of IDEAS) and detailed, high fidelity models for utility capacity
expansion planning (such as EGEAS) which are data intensive and time consuming.  CEEP offers
both fidelity to the basic principles used in utility capacity planning tools and sufficient speed and
parsimony to allow its use in general energy models.  The CEEP models are not designed for
detailed utility capacity planning, but they can be used to project trends on a regional level.  The
models give proper value to renewable sources and compete them against each other as well as
against conventional sources.

Projections from CEEP for a standard EGEAS test case have been compared to projections from
EGEAS with very good agreement between the trends.  Other validation activities include
obtaining critiques from NREL, DOE, and EPRI personnel; a critical review by a panel of utility
experts; and comparing individual algorithms from CEEP with more rigorous algorithms.  From
these activities, we conclude that the CEEP models accurately project trends and should be a
valuable tool for energy policy analysis.
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APPENDIX A.  Mathematical Description of the Energy
Production and Capacity Expansion Modules

Introduction

In this appendix we describe in detail the mathematical algorithms of the energy production and
capacity expansion modules.  The modules are coded in FORTRAN.  The FORTRAN symbols
associated with the mathematical variables are given in a table at the end of the appendix.  Every
technology analyzed in the modules falls into one of two classes:  intermittent, renewable, non-
dispatchable technologies, called IRETs, and dispatchable technologies, called DTs.  Renewable
technologies such as biomass and geothermal are in the dispatchable class, as are fossil burning
technologies.  Other renewable technologies with large associated storage should also be
considered dispatchable.  Non-dispatchable technologies are photovoltaics, solar thermal, and
wind (all without storage), and energy storage, ES.  Hydro may be placed in either class,
depending on the particular application;  however, care must be taken to define its properties
properly in either assignment.  The modules can treat any number of IRETs and DTs, with
running time and computer size being the only valid limitation, but at least one IRET and three
DTs must be used.  In addition, only one of the IRETs may be energy storage.

Any self-consistent set of units may be used.  In the discussions we will assume that power is in
kw, all costs in $/kWy, and energy in kWy.  Another consistent set of units would be GW,
$M/GWy, and Gwy.  All energy units are on a per year basis. 

A call to the energy production module yields the least-cost energy production of the simulated
system for the current one-year period;  given the current demand, and the properties and current
on-line capacities of the various technologies.  By “current year” we mean the current simulation
problem time.  A call to the capacity expansion module yields the new capacity additions whose
construction should be completed in the future year in order to satisfy the anticipated demand in
that future year.  By “future year” we mean some year in the future from the current year.  The
construction times for the technologies are not considered by the capacity expansion module. 
Management of how much of the new capacity additions suggested by the module are actually
constructed and when their construction is initiated are functions of the utility module which calls
the capacity expansion module.  The capacity expansion module uses the estimated future load
demand and technology costs are properties in the future year, as well as the estimated capacities
and properties of the various technologies that will be on-line at the future year, and returns new
capacity additions that will satisfy the future demand in a least-cost fashion.  Because the
algorithms for both modules are necessarily simple and heuristic, they are sub-optimal.  However,
they are very near optimal under the constraints of the model.
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We assume that we are considering I > 2 DTs and  J > O IRETs.  The subscript I = 1, 2, ..., I is
used to identify the DTs and j = 1, 2, ..., J to index the IRETs.  For convenience, we use the
special notation ∑ξ to denote the sum on the index ξ.

Energy Production Algorithm

This module computes the amount of energy produced by each technology to satisfy the current
yearly demand; that is, it computes the total energy that will be dispatched by each technology
over the current year.  We first explain energy production without energy storage, which is
discussed later. 

Input:

Lt Load demand table, in kW, as a function of time-of-year t, t = 1, ..., T.  This table, of
T > 0 entries, gives the current average load power demand for each 1/T part of the year. 
The table may be in any time-of-year order, but the order must be consistent with the same
time-of-year order as the IRET production supply tables.  In the special case of energy
storage, the order is somewhat more restrictive, see section A.2a.

Pj Maximum rated power capacity of the existing, on-line, j-th IRET (kW).

Sjtl The current production supply function of the j-th existing, on-line, IRET over time the
t-th time interval (nondimensional).  Over the t-th time interval the j-th IRET produces
PjSjtl kW of power, and PjSjtl/T kWy of energy.  These functions apply to non-ES
IRETS only.

coi Operating cost of the i-th DT is ($/kWy).

Pi Maximum power capacity of the existing, on-line, i-th DT (kW). 

fi Forced availability rate of the i-th DT (one minus the forced outage rate).

si Scheduled availability rate of the i-th DT (one minus the scheduled outage rate).

eps Energy storage efficiency, 0 < eps < 1.

rps Fraction of a day that ES is able to operate at full power output, 0 < rps < 0.5.
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Output:

Ej Total energy produced by the j-th IRET in the current year (kWy).

Ei Total energy produced by the i-th DT in the current year (kWy).

The first operation of the module is to sort the DT’s in merit order:  that is, in increasing
operating cost order.  At the completion of the year’s dispatching the technologies are put back in
the original order, along with the energy results, so the sort is transparent to the calling module. 
We therefore assume that i = 1 is the index of the lowest operating cost technology, i = 2 is the
index of the next-to-lowest operating cost technology, etc.  The DTs are dispatched in increasing
index i order.

The IRETs are dispatched before the Dts, on the assumption that the IRETs always have lower
operating costs that the DTs.  The IRET energy is subtracted from the load, and the remaining
“net” load is dispatched by the DTs.  The total energy produced for each IRET technology is:

Ej = ∑t  PjSjtl/T.   

The remaining net load function is:

Λt = max (0, Lt - ∑j PjSjtl).

The net load function, Λt, is sorted into decreasing order, generating a monotonically non-
increasing pievewise-step load demand table denoted by Λst.  We wish to create a continuous load
demand curve, λ(u), as a function of capacity utilization ratio, 0 ≤ u ≤ 1, so that the load demand
curve may be easily inverted, interpolated, and integrated.  The function λ(u) is continuous and is
piecewise linear between the arguments:

u = (t - 1)/T and t/T.

The values of λ at the T+1 equi-spaced values of u where the linear pieces are joined are:

λ(0) = (3ΛS1 - ΛS2)/2,

λ(t/T) =(ΛSt + ΛS,t+1)/2, t = 1, 2, ..., T-1,

λ(1) = (3ΛST - ΛS,T-1)/2.

The generation of  λ(u) is shown in Figure A-1 for a simple example with T = 5.  We denote the
inverse of λ(u) as u(λ).  The λ and u function have the constraints that :
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λ = 0 for u < 0 and u > 1,

u = 1 for 0 ≤ λ ≤ λ(1),

u = 0 for λ < 0 and λ > λ(0).

Figure A-1.  Load Functions

The DTs are now dispatched, in merit order, to satisfy the net load  λ.  The basic idea in the DT is
that the average, reliable power generated by each technology, called “effective” capacity (or
effective power) is Pifi and the maximum energy generated is Pifisi.  We assume that scheduled
outage for maintenance is done when the technology is not needed to satisfy demand, so that if
the  capacity utilization factor of the technology is less than the scheduled availability, scheduled
outages is not a factor in its energy production.

The energy production is computed in a recursive manner.  Let X be the total energy produced
and p the total effective power associated with the dispatched energy.  Initially, set x = 0, p = 0,
and i = 1.  The recursion steps are:
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  1. Set p equal to p + pifi.
     p

  2. Ei = max{0, min[pifisi,     ∫  u(λ)dλ - x]}.
                                      0
  3. Set x equal to x = Ei.

  4. Set i equal to i + 1.  If i > I, quit, else go to step 1.

Energy Production with Energy Storage

Computation of ES energy production is complicated by the fact that it is quasi-dispatchable.  We
assume that ES is dispatched in an “optimal” manner on a diurnal basis.  The basic concept is that
when demand is low during a day the ES can be charged by base technologies which have
relatively low operating costs; and when demand is high during the same day, the ES can be
discharged to replace relatively high operating cost technologies.  For each day only enough
energy is dispatched so that the marginal cost of the energy necessary to charge storage is less
than the marginal cost of the discharged energy that would have to be provided by a DT.  We
assume that each day’s energy production is independent of all other days’.  Of course, there is an
energy efficiency loss in the process.

Assume that one (and only one) of the IRETs is ES.  Given the initial load table, we remove all
non-ES IRET production to produce a “quasi-net” load table.  We then “optimally” dispatch the
ES energy based on this quasi-net load.  Here “optimally” means in an heuristic, least-cost,
manner.  The ES energy is removed from the quasi-net load, and the remaining net load is sorted,
 the linearized load demand curve is generated, and the DT energy dispatched as described in
section A.2.

If ES is a candidate technology, the initial load demand table, Lt, must be contiguous diurnally;
that is if a day is defined to be H > 0 “hours,” the first H values of Lt are considered to be data for
a common day.  The next H values are common to some other day, etc.  Therefore T must be a
multiple of H.  Typically, H = 24.  If the data set consists of ∆ days, then we must have T = H ∆.

For convenience, assume that ES is the J-th IRET, then the maximum power capacity of the ES
is PJ.  Let Qt be the quasi-net load table with the energy produced by the first J-1 IRET
technologies removed from the load Lt. 

J-1
Qt = max(0, Lt - ∑  PξSξt1).

ξ=1

For day δ, δ = 1, ..., ∆, let τ (δ) be the set of load values associated with day δ, i.e.,

τ(δ) = {tΗ(δ - 1) < t ≤ Ηδ}.
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The load values for each day, Qt, t ε τ  (δ), are processed in pairs.  We first process the largest Qt
in the set.  We next process the second largest paired with the next-to-the-smallest, etc.  There are
H/2 pairs processed each day.  The computed ES power output is subtracted from the larger load
of the pair, and added (after division by the efficiency, eps) to the smaller load of the pair.

Let Π denote the cumulative average effective DT capacity, and define the Ι+1 abscissa points

Πi = Πi-1 + Pifi, Π0 = 0, i = 1, 2, ..., I.

The marginal operating cost as a function of Π, κ(Π), is a piecewise step function with range

κ(Π) = coi, Πi-1 ≤  Π < Πi,

where coi is the operating cost of the i-th DT.  That is, the marginal operating cost for each power
level is equal to the operating cost of the last technology added or removed by the storage. Let
the subscript h, h = 1, ..., H/2, denote the ordered load pairs within the day δ.  Let the Αh (δ) be
the high Qt value of the h-th pair and let Bh(δ) be the low value.  From the definition of the
pairing, there is a well-defined pair of mappings of h onto τ, tΑ(h,δ) and tB (h,δ), so for each h in
each day a value of h and δ is associated with a unique pair of t values.  Let xh(δ) be the ES power
output for the h-th pair - to be subtracted from Αh(δ) - and Υh(δ) be the power added to the
system for the h-th pair - to be added to Bh(δ).  We have

Υh(δ) = Xh(δ)/eps.

The algorithm proceeds as follows:

For each day initialize the total available daily ES energy output to W = rpsHPJ.  This is the
maximum output the ES is allowed per day.  Initialize h = 1.

1. Find the maximum value of Xh(δ) such that

a) 0  ≤  Xh(δ) ≤  min(PJ, W) and

b) κ[Ah(δ) - Xh(δ) > κ[Bh(δ) + Yh(δ)]/eps.

If no such Xh(δ) cn be found, Xh(δ) = 0.  This step implies that the storage
discharge power cannot exceed its rated power and that the total daily energy

 output cannot exceed the rated storage energy.



24

2. Set Lt = Qt - Xh(δ), t = tA(h,δ) and Lt = Qt + Yh(δ), t = tB(h,δ).

3. Set W = W- Xh(δ).

4. Set h = h + 1.  If h > H/2, quit: else go to step 1.

This algorithm optimally dispatches ES energy and produces the net load table, Λt, which is
dispatched by the DTs as described in section A.2.  The total energy output of the ES is

EJ = 33δ33h xh(δ)/T.

Capacity Expansion Algorithm

This module computes the IRET and DT new capacity additions that satisfy future demand with
least-cost.  By “new capacity additions” we mean those capacity additions that the capacity
expansion module returns as results, which are suggested new capacity in addition to whatever
capacity is already committed to be on-line at the future time.  The algorithm is heuristic.  The
cost that is minimized is the total capital cost of the new capacity additions plus the total
operating cost of the augmented configuration of technologies.  As above, we assume that there
are I > 2 DTs and J > 0 IRETs.  This module also internally sorts the DTs in increasing operating
cost order, and unsorts the expansion results.  The sorting is transparent to the calling module. 
We therefore assume, as before, that i = 1 is the index of the lowest operating cost DT, etc.  The
operating costs of the IRETs are considered negligible with respect to the DT operating costs,
the IRETs are not reordered, and they produce as much energy as they can (with the exception of
ES, see sections A.2a and A.3b).  Since the ES operating cost does not include the energy cost to
charge it, the ES operating cost is also considered negligible to the DT operating costs.

Input:  As before, j refers to IRETs and i to DTs.

Lt Future load demand table (kW).  These data have the same properties as previously 
defined, but the values are for future load.

Fj Maximum power capacity of the j-th IRET that is already committed to be on-line at the
future time, before the suggested new capacity (kW).  This quantity includes all on-line
capacity plus all capacity already under construction that will be on-line at the future time,
less retirements.

Sjt1 Production supply tables associated with Fj.
Sjt2 Production supply tables associated with j-th new capacity addition.  The new capacity

additions are allowed to have different supply tables than the existing capacity, Fj.
ccj Levelized, annualized capital cost of the j-th IRET ($/kWy).
coj Levelized, annualized operating cost of the j-th IRET ($/kWy).
γj Cost diversity parameter for the j-th IRET.  Typically, γj = -10.
Mj Maximum allowed new capacity additions for the j-th IRET (kW).  If expansion of the j-

th technology is not allowed, Mj = 0.
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Fi Maximum power capacity of the i-th DT that will be on-line at the future time, before new
capacity additions are added (kW).

cci Levelized, annualized capital cost of the i-th DT ($/kWy).
coi Levelized, annualized operating cost of the j-th DT ($/kWy).
fi Forced availability of the i-th DT.
si Scheduled availability of the i-th DT.
ki A binary variable.  If ki = 0, the i-th technology may not be expanded.  If ki  = 1, the i-th

technology may be expanded, without bound.  The ki may change as time changes.  At
every time step, at least one technology must be expandable!

γ Cost diversity parameter for all DTs.  Typically, γ = -10. 
rm A parameter associated with the system reserve margin.  Typically, rm = 0.25.  Note:  rm  is

not the reserve margin of the system!

Output:

Bj Optimum IRET suggested new capacity additions, 0 ≤ Bj ≤ Mj (kW).
Bi Optimum DT suggested new capacity additions, 0 ≤ Bi (kW).  Note:  if ki = 0,

then Bi = 0.

Since all IRETs are assumed to generate all the energy they can, their capital cost and operating
cost, per unit capacity, is combined into a single cost for each IRET.  Let cj be the combined
capital and operating cost of the j-th IRET candidate new capacity addition.  We call cj the
“nominal” cost (per unit maximum capacity) and define it as

cj = ccj + coi ∑t Sjt2/T, for no-ES IRETs, and

cj = ccj + cojrps/2 if the j-th technology is ES.

This latter relationship is based on the assumption that the best estimate of ES production is that
it will produce half the energy of the maximum allowed.  The cj are fixed for each capacity
expansion call and have the units $/kWy.

Define:

bj A “candidate” new capacity addition for the j-th IRET, 0 ≤ bj ≤ Mj (kW).
β The set of candidate IRET new capacity additions, β = {bj, j = 1, ..., J}.
K The minimum total system cost of the candidate configuration, which satisfies the future

energy demand, ignoring any capital costs associated with the IRET new capacity
additions ($).

bi The candidate new capacity addition for the i-th DT, 0 ≤ bi, which produces the minimum
system cost ignoring IRET costs, K, given a candidate set of IRET new capacity
additions (kW).

c Total system cost of the candidate configuration, consisting of the total minimum system
cost, K, plus all capital costs associated with the IRET candidate additions ($).
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βi A set of candidate DT new capacity additions, βi = {bi, i = 1, ..., I}.

θ The function relating βi to β, βi = θ (β).

If Mj = 0, bj = 0; and if ki = 0, bi = 0.

The basic operation of the algorithm is as follows:

1. An initial candidate set of IRET new capacity additions, β = {bj}, is chosen.  The code
uses zero new capacity additions for all technologies, β ={0}, as the initial set.  Note:  for
all IRET candidate sets, 0 ≤ bj ≤ Mj. 

2. Given a candidate IRET new capacity additions set β, the algorithm finds the DT set βi =

{bi} = θ(β), which produce K; that is, the least-cost system given the IRETs, as though
the IRETs had no associated costs.  Since the IRET operating costs are subsumed into
the cj, K is not a function of the cj, but of β only (and \, of course, the net load and costs
and properties of the DTs, etc.).  Therefore, K = K(β).

3. The total system cost c = K(β) + ∑j cjbj, is computed.

4. Using a pattern search method [Haskell and Jones, 1977] a new β set is chosen and c, K,
and βi are recomputed.  The search continues until the minimum c is found.

5. Let the β set which minimizes c be β* = {bj*}.  An IRET price diversity algorithm is then
invoked which adjusts  β* to the price-diversified, optimal solution values Bj.

6. The optimal system cost is c* = c(Bj), the final DT new capacity additions are
 Bi = θ(Bj), and the final IRET new capacity additions are Bj.

Dispatchable Technology Capacity Expansion

Given a trial set of bj, we first remove the existing and candidate IRET production from the
(future) net load table.  The (future) net load table is

Λt = max[0, Lt - ∑j(FjSjtl + bjSjt2)].

If one of the IRETs is ES, a somewhat different procedure is used, see section A.3b.  The Λt

sorted, and the continuous, piecewise linear net load demand curve λ(u) is created in the same
manner as described in the current energy production algorithm section A.2, with one difference.
To account for reserve margin, the value of λ(0), the peak net load, is augmented.  Let λ′ be the
unaugmented value of the peak.  As in section A.2,

λ′ = (3ΛS1 - ΛS2)/2,



27

where ΛS1 is the largest value of Λt and ΛS2 is the next largest value of Λt.  The peak net load
demand, augmented by the reserve margin, is

λ(0) = λ′ + λ′ rm[∑tΛt//Tλ′)]2.7.

This relationship has been empirically derived by computing loss-of-load-probabilities for various
load shapes (average value to maximum value ratio) and “typical” forced outage rates for fossil
technologies.

The total DT effective new capacity needed to satisfy the future net demand is

g = max(0, λ(0) - ∑i  Fifi).

We refer to g as the “gap”.  If the gap is zero, bi = 0.  If g ≠ 0, we must compute the optimal
expansion of the DTs  This is accomplished by offering sets of candidate values of the bi and
choosing that set which minimizes the total capital cost of the (DT) expansion plus the cost of
producing all the energy required by the net load.  For I DTs we use I candidate sets.  the first I-1
candidate sets are generated by placing the total gap at load levels which are at the interfaces
between the i-th and i+1-th effective capacity.  The I-th candidate set is computed by distributing
the gap evenly between all DT interfaces.  Figure A-2 gives a graphical example of the gap
placements for I = 3.  Let the index n, n = 1, ..., I denote the n-th candidate set, and let bin be the
n-th candidate of the i-th technology.
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Figure A-2.  Graphic Example of Graph Placements

Before computing the bin, each DT is assigned a weight which depends on its position in the merit
order and whether its immediately adjacent neighbors in the merit order are expandable or not. 
Recall that the variable ki is zero if the technology is not expandable, and unity if it is expandable.
This variable is fixed at each simulation time, but may vary from time to time.  This situation may
occur, for example, when some technology may not exist early in a simulation, but comes into
existence as time progresses.  The situation may also occur if a technology has on-line capacity
which is used for energy production but cannot be expanded for non-economic reasons--
environmental, political, etc.  All (DT) expandable technologies compete with all others at every
gap position.  Therefore, the “inner” technologies, not the first nor the last in merit order, have,
have potentially more favorable opportunities to compete than the “outer” technologies.  Also, if
a technology is expandable and one or both of its neighbors is not expandable, the expandable one
has an advantage over its competitors who may have to compete with its neighbors.  The
weighting scheme is intended to create an even competition among expandable technologies.  The
weights, Wi, are:

1a. If i = 1 and k2 = 1, W1 = 2k1.
If i =  I and kI-1 = 1, WI = 2kI.

1b. If i =  1 and k2 = 0, W1 = k1.
If i = I and kI-1 + 0, WI = kI.
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2a. If 1 < i < I, and ki-1 = 0 and ki+1 = 0, Wi = ki/2.
2b. If 1 < i < I, and ki-1 = 1 and ki+1 = 0, Wi = 2ki/3.

If 1 < i < I, and ki-1 = 0 and ki+1 = 1, Wi = 2ki/3.
2c. If 1 < i < I, and ki-1 = 1 and ki+1 = 1, Wi = ki.

The various situations above are:
1a. Outer technology, competing neighbor.
1b. Outer technology, non-competing neighbor.
2a. Inner technology, neither neighbor competing.
2b. Inner technology, one competing neighbor.
2c. Inner technology, both neighbors competing.

Note that if the i-th technology is not expandable, Wi = 0.

Let λn be the load at the middle of the n-th gap for the first I-1 gap positions, and λIm, m = 1, ..., I-
1, be the mid-gap load for each of the distributed gaps, then

   n
λn = g/2 + Σ Fifi, n = 1, ..., I-1,

  i=1
           m

λIm = (m-.5)g/(I-1) + Σ Fifi, m = 1, ..., I-1.
           i=1

Associated with each gap position is a capacity utilization factor.  Let un denote the capacity
utilization factor associated with the first I-1 gap positions, and uIm be the factors associated with
the distributed gap.  All factors are computed by inverting the net load curve in the middle of each
gap position.  The capacity utilization factors are

un = u (λn) and uIm = u (λIm).

Each new capacity addition candidate value is “derated,” depending its forced availability and the
relationship between its scheduled availability and the capacity utilization factor where it may
operate.  Technologies must be derated because, in order to guarantee some level of dependable
power and energy, more capacity than the guaranteed level must be available.  The derating
function used in the DT expansion algorithm is

d(i,u) + 1/[fi max(1, 1 - u + si)].

In this formulation, if the capacity utilization factor is less than the scheduled availability,
scheduling is not considered.

Apportionment of the bin is accomplished by a logit function, see [Ben-Akiva, 1985], [Reister,
1982], and Appendix E.  The logit assumes that each technology exhibits price diversity, and that
in the aggregate there is a nonzero probability that any technology can outbid all others for market
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expansion.  If two technologies’ nominal prices are widely apart, the less expensive one will
capture most of the market, but if their nominal prices are quite close, they will tend to have
nearly equal market shares.  The logit formulation avoids “knife-edge” decisions, where, if one
price is infinitesimally less than another, the former get all the market share.  In addition to
addressing the reality of price diversity itself, the logit also implies uncertainty in assumed prices.

The logit formulation assumes that the cost (or price) of all competing technologies are
independent random variables whose probability density function is Weibull.  The Weibull
distribution is defined by two parameters:  a location parameter and a shape parameter.  If the
nominal cost of a technology (location parameter) is c, and its shape parameter is γ (γ < 0), then
the cost distribution has mean and variance

Weibull mean = [Γ(1 - 1/γ)c ,

Weibull variance = [Γ(1 - 2/γ) - Γ 2(1 - 1/γ)] c2,

where Γ is the gamma function.  For γ = -10, the mean is 0.95c and the standard deviation is
0.1145c.

The candidate capacity expansion values are

bin = gΩind(i,un)/ ΣiΩin, for n < I, and

bin = g ΣmΩimd(i,uIm)/ ΣiΣmΩim, n = I,

where the Ωin and Ωim are the logit weights

Ωin = Wi[d(i,un)cci + un coi ]γ, = 1, ..., I-1,

Ωim = Wi[d(i,uIm)cci + uImcoi]γ, m = 1, ..., I-1.

The energy production required to satisfy the future net load is calculated for each candidate set
of new capacity additions.  The production algorithm is the same as current energy production
described in section A.2 with the future net load as the net load, and the future existing capacity
plus the candidate capacity as capacity.  Let Ein be the energy production of the i-th technology
and n-th candidate set.  For each n we initially set X = 0, p = 0, and I = 1.  The algorithm is

1.     Set p = p + (Fi + bin) fi.
                                                              p
2.     Ein = max {0, min[(Fi + bin)fisi,    ∫  u(λ)dλ - X]}.
                                                             0
3.     Set X equal to X + Ein.

4.     Set i = i + 1.  If i > I, quit, else go to step 1.
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Let Kn be the capital cost plus energy cost associated with the n-th DT candidate set,

Kn = Σi ccibin + Σi coi Ein.

The “best” set is that set which yields the minimum value of Kn; i. e.,

bi = bin*, if Kn* ≤ K1, K2, ..., KI, i.  e., K = Kn*.

In summation, given a candidate set of IRET new capacity additions, β, the algorithm computes
the set of DT new capacity additions, βI = θ(β), which minimizes the total expanded system cost
as though the IRET new capacity additions were free.  That minimum cost is k = k(β).

Capacity Expansion with Energy Storage

Energy production with energy storage for the future system is essentially the same as for the
current system, section A.2a, but the definition of the existing DT effective capacities used to
optimally dispatch the ES energy is more complicated.  Ideally, the total future capacity of each
DT is its existing (future) capacity plus its (candidate) new capacity addition, see section A.2a.  If
bin is a candidate set of DT new capacity additions, then the definition of cumulative average
available capacity for the future candidate system is

Πi = Πi-1 + (Fi + bin)fi.

However, since the DT new additions depend on the candidate ES energy production, and the ES
energy production depends on the DT new capacity additions, we are faced with a circular
computation.  It would be possible to resolve the computation by an iterative procedure, but this
would be too computationally expensive. 

We use a simple heuristic to estimate the DT new capacity additions with respect to each IRET
candidate set which uses ES.  When the capacity expansion module is called, the first IRET
candidate set is always the zero valued set β ={0}.  Let the optimal (minimum k) DT set
associated with this IRET candidate set be bi0 = θ ({0}), and define the relative new capacity
expansion ratios by

ρi  = bi0/ Σi bi0.

For all other candidate IRET capacity expansion sets, β, at the same future time, we define the
cumulative capacity as

Πi = Πi-1 + (Fi + gρi)fi,
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where the gap width g depends, of course, on β.  The ES energy is then dispatched as in section
A.2a with Πi  defined as above.

IRET Search Space Constraint and Price Diversity

As described above, for each candidate IRET new capacity addition set, βi  = θ (β), a (minimum)
cost associated with the DT new capacity expansion capital costs and future energy production
costs, K = K(β), and a total system cost

c = K(β) + Σj cjbj.

Using a pattern search [Haskell, 1978], we find the set β* = {bj*} which minimizes c subject to
the constraints, 0 ≤ bj* ≤ Mj.  The search space consists only of those IRETS which are
competitive, i.e., where Mj > 0.

In order to possibly reduce the search space and thereby save computer running time, we estimate
whether or not each IRET (with Mj > 0) has a reasonable potential for market penetration before
beginning the pattern search.  To this end we estimate at what cost each technology would just
begin to add new capacity.  Let this “initial penetration” cost be κzj.  We assume that, in the
absence of cost diversity, if cj ≥ κzj, there would be no new capacity added, and if cj < κzj, some
new capacity would be added. 

The IRET cost diversity is modeled as a normal (guassian) probability distribution with mean cj

and standard deviation

σj = [Γ(1 - 2/γj) - Γ2(1 - 1/γj)] 
1/2 cj.

We define the probability density function of the j-th cost to be pj(c).  This cost probability allows
negative pricing, but with extremely small and negligible probability.  For γj = -10, the cost
standard deviation is 0.1145cj  or about 11% of the nominal cost.  If the nominal cost is 2.5
standard deviations or more greater than the initial penetration cost, we assume that the
technology has no potential for competition (at the particular simulation time, not for all time)
even with cost diversity; that is if cj - 2.5σj ≥  κzj, then the j-th IRET is removed from the search
space and classified as noncompetitive.  Setting this cutoff limit at 2.5 standard deviation ignores
at most 6.62% of the potential penetration. 

The values of the κzj are estimated by a numerical gradient.  In order to succinctly and clearly
explain how the gradient is computed we define the following special notation.  Let the set αj

(χ,x) = {ξj} consist of all J values of the set χ except the j-th one, and let the value of the j-th one
be x.  For example, suppose J = 4, and we have the values χ = β = {b1,b2,b3,b4}.  The set α3

would have ξ1 = b1, ξ2 = b2,  ξ3  =  x, and ξ4 = b4.

We repeat a previous result.  The total system cost for candidate set β is
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c = K(β) + Σjcjbj,

where β = {bj}  for 0 ≤ bj ≤ Mj.  For any fixed value of cj, the minimum value of c is obtained
where its partial derivatives with respect to the bj are zero; i.e., the necessary condition that the bj

be optimum (minimize c) is where

Mc/Mbj  = 0 = cj  + MK/Mbj , or
                                                              cj  = -κj ,

where κj =MK/Mbj .  Note that the equation above is valid for any nominal cost.  Define a “small”
step in the bj 

 dimension as δj .  In the code we use δj =0.02Mj .  The initial penetration for the jth

technology is estimated by computing

κzj = -[K(αj({0},δj)) - K({0})]/δj.

The first term on the right side of the equation above is K evaluated with all new capacity
candidates set to zero except the j-th one, which is set equal to δj, and the next term is k evaluated
with all the bj set to zero. 

The pattern search now finds the optimal new capacity addition values, β* = {bj*}, without cost
diversity considered, of the technologies in the competitive search space.  For each competitive
technology one of three results are possible:

bj* = 0, 0 < bj* < Mj, or bj* = Mj. 

If the technologies are not competitive (not in the search space), then the optimal, cost diversified
solution is Bj = bj* = 0, and they are not considered further in this simulation time.

An estimate of the effect of cost diversity on IRET new capacity additions is computed by
defining a new capacity penetration function as a function of technology cost.  The procedure is
graphically described in Figure A.3.  For each j this penetration function is evaluated with all new
capacities except the j-th one set to their optimal solution, bj*.  Call this function Φj(c).  We
assume that Φ is continuous, piecewise linear, with the derivative discontinuities at the values coj

> cmj > cMj.  Let 0 < bmj < Mj be the value of Φ at c = cmj.  We have

Φj(c) = Mj, c ≤ cMj,

Φj(c) = (c - cMj)(bmj - Mj)/(cmj - cMj) + Mj, cMj < c ≤ cmj,

Φj(c) = -(c - cmj)bmj/(coj - cmj), cmj < c ≤ coj, and

Φj(c) = 0, coj < c.
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Figure A-3.  Iret Price Diversity

If bj = 0 or bj = Mj, then we set bmj = Mj/2; otherwise we set bmj = bj*.  The cost points of the Φj

function are estimated by a numerical gradient.  We get

coj = -[K(αj(β∗,δj)) - K(αj(β∗,0))]/δj,

cMj = -[K(αj(β∗,Mj)) - K(αj(β∗, Mj - δj))]/δj,

cmj = cj if bmj = bj*

cmj = -[K(αj(β∗, bmj + δj)) - K(αj(β∗, bmj))]/δj, if bmj ≠ bj*

The j-th IRET optimal new capacity addition adjusted for cost diversity is the convolution of Φj

and the probability density function of the j-th cost,

∞           
Bj = ∫ Φj(c)pj(c)dc,

- ∞             

see Figure A.3.  This integral is easily evaluated in closed form [Gradshteyn and Ryzhik, 1965].
The Bj are the new capacity additions for the IRETs and the associated DT new capacity
additions are computed from Bi = θ ({Bj}) as described in section A.3a.

FORTRAN COMMON Arrays and Symbol Table

Communications between the utility module and the energy production and capacity expansion
modules is through FORTRAN labeled COMMON arrays.  The convention is maintained
throughout that symbols beginning with I through N (inclusive) are INTEGER *4, and all other
variables are REAL *4.  There are some REAL *8 variables, but they are internal to the module.

There are two kinds of technologies represented in the code.  Symbols starting with or containing
the letters “RE” are associated with IRET technologies.  Storage is in the RE class.  All other
energy technologies are considered to be “conventional” in that they are essentially dispatchable.
This second group, DT technologies, contains all fossil energy sources as well as renewable
sources such as hydro, biomass, and geothermal.  These technologies contain the letters “CV” in
their symbols.  In any particular year some of the competing DTs may or may not be available for
purchase for various reasons.

Subroutine calls
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The routine which computes energy production at the current
problem time is called by

CALL CUDISP (X),

where X is an array of dimension at least NLDC and contains the
NLDC values of the current demand table, )NLDC is the number of
points in the load demand table, see below).  The routine returns
the IRET energy produced in array REEN, and the DT energy
produced in array CVEN.

The capacity expansion routines are called by

CALL CAPEXP (X, CSTSYS),

where X is an array of dimension at least NLDC and contains the
NLDC values of future estimated demand table.  The routine’s
output is the amount of IRET and DT to purchase, in arrays RETP
and CVTP, respectively, and the amount of energy dispatched for
the total future system, assuming all purchased assets will have
come on-line, is in arrays REEN and CVEN.  The system cost,
CSTSYS, is the sum of capital costs of all new purchases plus the
cost of operation for the total future system.  By “purchase” of
capacity we mean begin construction of new capacity.

PARAMETER Statements

Labeled COMMON maximum array sizes are determined by three
PARAMETERS.  If any of the array sizes are to be changed, all
pertinent PARAMETER values must be modified and the module re-
compiled.  The PARAMETERS are:

MXNRE  = Maximum number of IRET technologies.
MXNCV = Maximum number of DT technologies.
MSNLDC = The maximum number of values (less one) in the energy demand tables (current

and predicted).  Although these table entries may be in any time-of-year order, we
will refer to them as the LDC.

LDC COMMON Arrays

COMMON /COMLDC/ NLDC, NLDC1, DELLDC, WKLDC(MXNLDC), 
PINLDC(MXNLDC), ADJLDC(MXNLDC)

Tabular values of the current and predicted demand for each time
step are passed through subroutine arguments.  Once initiated,
the number of entries must remain the same for all time steps. 



36

The entries may be in any time-of-year order (exception for
storage, see below), but the order must be consistent with the
time-of-year order of the IRET supply tables (RESUP).  If there
are NLDC entries, then it is assumed that each entry specifies
demand for 1/NLDC part of the year.

NLDC = Number of entries in the current and future energy demand tables, 6 ≤ NLDC <
MXNLDC.  The value of NLDC must be preset before the first call to the module
and may not be changed.  If storage is used, NLDC must be a multiple of
NHSTOD, see below.

NLDC1 = NLDC + 1.  This value must be preset before the first call to the module and may
not be changed.

DELLDC = 1/NLDC.  This value must be preset before the first call to the module and may
not be changed.

WKLDC, ADJLDC, and PINLDC are work arrays used by the module. 

RE COMMON Data Arrays

COMMON /COMREN/ NRE, RECC(MXNRE), REOC(MXNRE), REMP(MXNRE),
REPA(MXNRE), REFPA (MXNRE), REAVS (MXNRE), RETP(MXNRE),
REEN(MXNRE), RESUP(MXNLDC,MXNRE,2) RECST(MXNRE),
REPLOG(MXNRE), ISWSTO, STOEFF, STOMER, NHSTOD

NRE = The number of competing IRETs, 0 < NRE ≤ MXNRE.
RECC = Levelized annualized capital cost of IRET, $/kWy.
REOC = Levelized annualized operating cost of IRET, $/kWy.
REMP = Maximum annual amount of the IRET that can be purchased, kW.

If REMP (j) is zero at any time, then the j-th IRET is not a
candidate for capacity expansion at that time.

REPA = Amount of existing, on-line IRET physical assets, kW.
REFPA = Amount of IRET that will be on-line at the future time horizon of

the capacity expansion, excluding new capacity additions
suggested by the expansion routine, kW.

RETP = IRET new capacity additions, kW.
REAVS = Average capacity utilization factor of the future IRET.  This quantity

is given by

REAVS (j) = Σ max [0, RESUP (i,j,2)]/NLDC,

where the sum is over i.
REEN = Energy produced by the IRET, kWy.  For current dispatching REEN is the

energy currently produced by REPA.  For capacity expansion, REEN is the
energy produced at the time horizon by the IRET, where it is assumed that
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the future total on-line capacity of the IRET is REFPA + RETP.
RESUP = RE supply tables, nondim.  RESUP(t,j,k) is the supply value for the j-th IRET

at the t-th time, where the time order of RESUP for all IRETs must correspond
to the time order in the given LDC tables.  The k subscript refers to the time at
which the supply is available.  When calling CUDISP, k = 1 is the supply for the
current problem time, and applies to REPA (k = 2 is not used).  When calling
CAPEXP, k = 1 is the supply is made since the best solar and wind sites tend
to be used up as these technologies penetrate the market.  If the j-th IRET has
current on-line capacity REPA (j), then its energy output is

REEN (j) = REPA(j)*Σ RESUP(t,j,1)/NLDC,

summed over t.  The energy output of the j-th RE at future time (assuming that
all new capacity additions have come on-line) is

REEN (j) = [REFPA (j)*Σ RESUP (t,j,1) + RETP (j) *Σ RESUP (t,j,2)]/NLDC

sum over t.

For storage, RESUP is computed internally, and need not be inputted.  Also,
REEN is negative.

RECST = An internal work array.
REPLOG = Logit parameter for RE cost diversity, set to -10.
ISWSTO = Storage indicator.  Only one IRET may be storage.  If there is no storage, set

SWSTO to zero, otherwise it is the index of the storage technology in the RE
data set.

STOEFF = Storage efficiency, 0 < STOEFF < 1.
STOMER = Storage maximum energy ratio, 0 < STOMER < 0.5.  This quantity specifies

the maximum positive energy produced by storage.  The upper bound of .5 is
due to the fact that if storage is to provide energy to the system for some period
of time, it must spend at least that much time recharging itself from the system. 
Storage is assumed to cycle diurnally.

NHSTOD = The number of “hours” in a storage “day.”  It is assumed that storage charges
and discharges energy on a diurnal cycle.  If the input LDC is hourly, then
NHSTOD should be set to 24.  It is required that NHSTOD be even and at
least 2.  If storage is used, it is necessary that the LDC input be ordered in daily
groups; that is, the first 24, say, data points refer to some day, and the next 24
to another day, etc.  The order of days is not important.  Also, NLDC must be a
multiple of NHSTOD.

If there is no storage, ISWSTO = 0, and STOEFF, STOMER, and NHSTOD are not used.

The quantities REAVS, RETP, and REEN are output from the module, all other quantities are
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input or work arrays.

CV COMMON Data Arrays

COMMON /COMCVT/ NCV, PLOGIT, SYSLOL, CVCC(MXNCV), CVOC(MXNCV),
CVFOR(MXMCV), CVPA(MXNCV), CVFPA(MXNCV), CVMCF(MXNCV),
KCVP(MXNCV), CVTP(MXNCV), CVEN(MXNCV), CVNS(MXNCV),
CVWT(MXNCV), GITNOR, IBEST

NCV = Number of DT technologies, 0 < NCV ≤ MXNCV.
PLOGIT = Parameter for the logit market penetration of the DTs.  In accordance with

the FOSSIL2 convention, set PLOGIT to -10.
SYSLOL = A factor concerning reserve margins for satisfying loss of load.  SYSLOL

should be preset to 0.25 by the user.
CVCC = Levelized annualized capital cost for the DT, $/kWy.
CVOC = Levelized annualized operating cost for the DT, when input to CAPEXP.

When input to CUDISP, CVOC is the current operating cost, $/kWy.
CVFOR = Complement of the forced outage rate of the DT; that is, it the forced outage

rate for the j-th DT is 10%, CVFOR(j) = .90.
CVPA = Current DT on-line capacity, kW.
CVFPA = Future on-line capacity, excluding new capacity additions, kW.
CVMCF = Maximum DT capacity utilization factor, ignoring forced outages, also

referred to as the scheduled availability.
KCVP = Indicator of DT status.  If KCVP(j) = 1, the j-th DT may be currently

purchased; if KCVP(j) = 0, the j-th DT may not be currently purchased.  At least
one DT must be capable of being purchased at every time.

CVTP = DT new capacity additions, kW.
CVEN = Energy produced by the DT, kWy.   For current dispatching CVEN is the energy

dispatched by the CVPA.  For capacity expansion, CVEN is the energy produced
at the time horizon by the DT, where it is assumed that the future total on-line
capacity of the DT is CVFPA + CVTP.

CVNS = The nominal maximum power generating size of each individual unit of the j-th
CVC technology.  This array is used only under the Booth-Baleriaux cumulate
option (INBC = 1), and may be ignored if the “integration” method (INBC = 0)
is used.

CVWT, GITNOR, IBEST are work arrays used internally by the module.

The quantities CVTP and CVEN are output from the module, all other quantities are input or
internal work arrays.

OPTIONS COMMON

COMMON /COMOPT/ TIME, PTIME, IPR, IPCT, IOM, INBC, INDD, GADER
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The only element in this common thath need be set by the casual
user is TIME, which is the current problem time in years.  The
other quantities have to do with various internal options in the
code.

TIME = Current problem time in years.
PTIME = A switch used in code checkout.  Set to zero.
IPR = Another checkout switch.  Set to zero.
IPCT = Another checkout switch.  Set to zero.
IOM = CV expansion option.  Set to zero.
INBC = Option to use the “integration” method (INBC = 0) or the Booth-Baleriaux

method with cumulants (INBC = 1).  Set to zero.
INDD = Option to use RE price diversity (INDD= 0) or not to use RE price diversity

(INDD = 1).  Set to zero.
GADER = A parameter having to do with RE search space smoothness.  Set to 0.03.

Initialization

Once the value of NLDC is established, but before CUDISP or
CAPEXP are called, the user should initialize the following
variables.  The quantities with an asterisk are suggested, but
not required, values.

NLDC1 = NLDC + 1 DELLDC = 1./REAL(NLDC) PLOGIT = -10.*
SYSLOL = 0.25* REPLOG(...) = -10.* PGTIME = 0
IPR = 0 IPCT = 0 IOM = 0
INBC = 0 INDD = 0. GADER = 0.03*

These quantities, plus NRE, NVC, ISWSTO and NHSTOD, should not be
changed once a simulation is started!

FORTRAN/Math Symbol Table

This table correlates the FORTRAN symbols with the mathematical
symbols used in the exposition of the algorithms.

FORTRAN Symbol Math Symbol
NLDC T
X(t) Lt

NRE J
RECC(j) Ccj

REOC(j) Coj

REMP(j) Mj

REPA(j) Pj
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REFPA(j) Fj

RETP(j) Bj

REEN(j) Ej

RESUP(t,j,1) Stj1

RESUP(t,j,2) Stj2

REPLOG(j) γj

STOEFF eps

STOMER rps

MHSTOD H
NCV I
PLOGIT γ
SYSLOL rm

CVCC(i) Cci

CVOC(i) Coi

CVFOR(i) fi

CVPA(i) Pi

CVFPA(i) Fi

CVMCF(i) si

KCVP(i) ki

CVTP(i) Bi

CVEN(i)     Ei
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APPENDIX B.  Investigation of Utility Capacity Expansion Model Concerns

   Date: March 16, 1992

     To: Joe Galdo, DOE/CE/OUT

   From: Mike Edenburn and Gene Aronson, Sandia/6601

Subject: Investigation of Utility Capacity Expansion Model Concerns

Summary

At our January 30 quarterly review, Jack Cadogan expressed several concerns related to the
efficacy of our model.  We felt that they were legitimate concerns which will be shared by many
future model reviewers, and we have spent some time addressing them.  We addressed the
concerns in the context of our objective which is to construct a simplified model for studying the
effects of alternative policy strategies on renewable energy technology penetration into the utility
market.  The model is not intended for use in detailed utility capacity expansion planning.

The first main concern was related to treating averaged intermittent source production as a
negative load.  This concern was shared by Narayan Rau at an earlier meeting with NREL.  Jack
stated that using a deterministic profile will over-estimate an intermittent source's capacity value,
and he suggested reading several documents including some by Grubb, Fegan, and Percival.  The
documents cautioned that treating averaged intermittent production as a negative load will over-
value intermittent capacity.  Grubb suggested that if intermittent source production is averaged
and treated as a negative load, capacity valuation will be accurate for small penetrations but not
for large penetrations.  We performed analyses which verified Jack's concern and concluded that
capacity valuation is accurate up to about 5% penetration but can be roughly 20% high for 10%
penetration and even higher for 20% penetration when one average production day is used to
represent an entire month.  Although over-valuation is significant for large penetration, results are
more accurate than assuming no or full capacity credit, and they may be acceptable, particularly if
penetration does not exceed 10%.  Errors arise because averaging intermittent production does
not adequately capture its probabilistic nature.  Errors can be reduced by using more data or by
using a probabilistic analysis.  We are examining ways to capture the probabilistic nature of
intermittent production without significantly increasing computational burden, but we expect that
there will be a tradeoff between accuracy and computational burden.
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The second main concern was related to production costing (dispatching).  This concern was also
shared by Narayan Rau.  It was addressed in an earlier memo (Comparison of Sandia's Utility
Capacity expansion and Dispatching Model to More Detailed Methods, dated November 26,
1991, from Mike Edenburn to Distribution).  We revisited the issue, but this time we included
scheduled outages.  We compared three analyses:  1) a probabilistic analysis with seasonal,
scheduled outages; 2) a probabilistic analysis with a scheduled outage approximation suggested by
Peter Lilienthal from NREL; and 3) a load duration curve integration method with a scheduled
outage approximation (the method our model uses).  Method #1 is the more rigorous of the three
and is used as a standard.  Both of the approximate methods are in good agreement with method
#1 (the values of displaced energy agree within 5%).

The third main concern was directed at our method for optimizing dispatchable capacity
expansion.  This is the method where we assume that all new dispatchable capacity is added at a
capacity factor represented by the gap between two existing technologies.  (Existing technologies
are arranged in merit order on a load duration plot.)  The allocation of new capacity is determined
by a logit apportionment and the capacity gap location which results in the lowest cost is selected.
 Part of the concern with this method derives from our failure to provide a clear explanation, and
we have included further explanation in this memo.  The rest of the concern is that the method
gives "noisy" results.  A particular technology may make a relatively large penetration in one year
followed by very small penetrations in subsequent years.  While our method does not give a true
optimum expansion in any single year, it tracks the optimum from a more detailed method very
well over several years.  We have modified the method, and the modification tends to smooth
results.  In addition to adding new assets all in one place between existing adjacent technologies,
we also divide new capacity equally between all pairs of existing adjacent technologies.  New
capacity share for each location is determined by a logit apportionment applied for the capacity
factor at each location.  The total cost for the equally distributed addition is competed with costs
for the "all in one place" additions, and the minimum cost option it is selected.  As before, the
method does not provide a true optimum expansion in any single year, but with the new addition,
it tracks the more detailed method closer and more smoothly than before.

Each of the three concerns will be discussed in more detail.

Objective Function

To begin a discussion of the concerns, we will try to put them into perspective by describing the
model's quantitative objective:

Find the mix of competing technologies, both intermittent and dispatchable, which must be
added to a utility system to satisfy a projected electrical load at minimum levelized annual
cost.

Levelized annual cost is described mathematically by Equation 1.
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                                         T = Σ [CciBi + CoiEi(Bi + Fi)] (B-1)

T   is total future (after planning horizon) levelized annual cost,
Cci is levelized annual capital cost ($/kW-Yr) of the ith technology,

      Coi is levelized annual operating cost ($/kWh) of the ith technology,
Ei  is annual energy generated (kWh/kW-Yr) by the ith technology,
Bi  is the new capacity increment (kW) of the ith technology, and
Fi  is the existing and under construction capacity (kW) of technology i

           that will be on line at the planning horizon time.

This is the model's objective function which we want to minimize while satisfying the utility
system's load requirements.  The total future system cost is the sum of levelized capital cost for
new capacity and levelized operating cost for all capacity.  The model's objective is to select the
values of Bi which minimize T.  To select correct values of Bi we require accurate values for
capital and operating cost, accurate values for Ei, and a process which identifies the optimum Bi's.

Our model uses a simplified production costing (dispatching) algorithm to compute values for Ei.
The dispatching algorithm's accuracy is the subject of the second concern expressed above.  Also,
treating intermittent production as a negative load (the first concern expressed above) is important
to production costing accuracy because negative loads partially determine the system's load
duration curve, and an accurate load duration curve is required for accurate production costing.

Finding the optimum set of Bi's is conceptually simple but not computationally simple.  We have
sophisticated algorithms which can find the Bi's, but they are too cumbersome and time
consuming for the simplified model we are trying to develop.  The algorithm we use is "near-
optimal" and follows optimal results with acceptable agreement.  The accuracy of our "near-
optimal" algorithm is the central issue in the third concern expressed above.

Equation 1 is subject to a constraint as defined by Equation 2.

                                                      3 (Bid + Fid) = P* (B-2)

Bid and Fid refer to new and existing dispatchable capacity.  This equation requires that the sum of
dispatchable capacities must be equal to total dispatchable capacity P* which is the peak net load
plus a reserve margin.  The required reserve margin value depends on meeting a prescribed loss of
load probability or on meeting a prescribed unserved energy.  Reserve margin plays an important
role relative to treating intermittent production as a negative load because the treatment of
negative loads affects the system's net peak load and the shape of its load duration curve.

Understanding the importance of the dispatching algorithm and the optimization algorithm will
help keep the following discussion in perspective.
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Treating Intermittent Production as Negative Loads

In our model, we have been representing intermittent production by one "average" day per month.
 To get production for each hour of the "average" day, we average production for each hour over
the month.  The hourly data used to find the monthly average are themselves an average of ten
minute or smaller intervals over the hour.  Thus, our monthly average for each hour is an average
of an average.  Intermittent production is treated as a negative load; that is, production is
subtracted from load to get a net load.  By treating intermittent production as a negative load we
are, in effect, assuming that the intermittent source has a firm capacity equal to its average
production during each hour.  Production values below the average will give firm capacity values
below average, and production values above the average will give firm capacity values above
average.  Below average values are weighted more heavily than above average values in a loss of
load probability or unserved energy analysis; thus, using the average over-predicts firm capacity
value.  One might conclude that, since we are using averages of averages, the error is being
compounded and that we can never achieve accuracy until we use instantaneous data over an
infinite number of years.  Fortunately, this is not true.  If, for each load value, the statistical
distribution of production data is representative of the distribution of all production data
corresponding to that load value, our results will be accurate.  In general, there are many hours
during a year which have the same or nearly the same load and these loads will have a range of
associated intermittent production values.  If the range of production values matches the "true"
distribution, then results will be accurate.  How much data do we need for reasonable accuracy? 
We assume that a year's worth of hourly data gives a sufficient range of production values for
each load value to give reasonably accurate results.  We believe that this is a good assumption,
but we do not have the resources available at present to validate it.  We will use this assumption
in the analyses that follow.

To quantify the effect of averaging intermittent production data, we considered a PG&E hourly
annual load profile and an hourly wind production profile based on Fresno TMY data.  The
magnitudes of both profiles were altered to fit our analyses, but time dependence was not altered.
 We considered a utility composed of the following generation units.

Type Number Capacity Availability
Nuclear   1  850 MW    .908
Coal   8  250 MW    .963
Combined Cycle   8  150 MW    .945
Gas Turbine   9   50 MW    .965

These units represent the US proportion of thermal units (EIA's Electric Power Annual, 1989)
with availabilities (due to forced outages) taken from EPRI's Technical Assessment Guide.

Using a probabilistic production model, we computed the firm capacity which results in the same
unserved energy as a rated wind capacity.  We did this for two cases.  The first case used hourly
load and hourly wind data for a year.  The second case used hourly load data and monthly average
day wind data.  Results are shown in the following table.
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Peak Rated Wind Equivalent Firm  Equivalent Firm
Load  Capacity  Capacity  MW   Capacity  MW
 MW     MW     Hourly Annual Ave. Day per Month
3900    100       55.4        54.3

   500      208       254
  1000      287       457

4500   1000      331       474

Using average day-per-month wind data results in roughly the same capacity value as using hourly
annual wind data for a 100 MW (roughly 2% of total capacity) wind penetration.  At 500 MW
penetration (10% of total capacity) the error is 22% and at 1000 MW (18% of total capacity) the
error is 59%.  Increasing the peak load (from 3900 to 4500 MW) reduces the error, but it does
not eliminate it.  This analysis verifies that using monthly average intermittent production values
as negative loads overestimates capacity value for large penetrations.

The best way to visualize the statistical accuracy of using average intermittent production values
is through the net load duration curve (the load duration curve formed after intermittent
production values have been subtracted from loads).  If two load duration curves are the same,
loss of load probability, unserved energy, and production costing analyses will give the same
results.  Using average intermittent production values will tend to flatten the curve while using a
distribution of production values will tend to make it steeper at the beginning and end.  Figure 1
shows a load duration curve for a peak load of 3900 MW and a rated wind capacity of 1000 MW
for hourly annual load and wind data and for hourly annual load and monthly average day wind
data.  The differences in shape between the two curves account for the differences in capacity
value shown in the above table.
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Figure B-1.  Load Duration Curve Comparison

We do not want to use hourly data in our model because of the computer time required, so we
have examined an alternative way to treat intermittent production.  Instead of using an average
day per month, we tried three days per month.  The first day uses the average wind production for
the highest third of the month's data at each hour.  The second day uses the average of the middle
third, and the third day uses the average of the lower third.  This introduces a intermittent
production distribution (albeit a crude one) into the model.  It captures low, medium, and high
values of intermittent production for each hour.  We also formed three load days for each month. 
One represents a peak load day; another represents a minimum load day; and the third represents
an intermediate load day.  The three load days and three wind production days are used in all
combinations to give nine days per month of net load data.  The resulting annual load duration
curve is compared to the one derived using hourly annual data in Figure 2.  The match is quite
good.
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Figure B-2.  Load Duration Curve Comparison

Using the three day per month data in the equivalent firm capacity analysis gives the following
results.

Peak Rated Wind Equivalent Firm  Equivalent Firm   Equivalent Firm
Load  Capacity  Capacity  MW   Capacity  MW    Capacity  MW
 MW     MW     Hourly Annual Ave. Day per Month Three Day Per Month
3900    100       55.4        54.3        58.5

   500      208       254       233
  1000      287       457       330

4500   1000      331       474       393

The three day per month data results in much more accurate capacity value estimates than the one
day per month data.  The error for 10% penetration is 12% instead of 20%, and the error for 20%
penetration is in the 15-20% range instead of 40-60%.  We are evaluating using the three day per
month instead of the one day per month data in our model.  Using more data will require more
computation time.
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Production Costing (Dispatching)

The production costing (dispatching) algorithm is used to compute the energy generated (values
of Ei in Equation 1) by each type of generation technology during a year.  The algorithm
inherently accounts for displaced energy generation when an intermittent source is added to the
system and is important in determining the value of an intermittent source.  Our simplified
dispatching algorithm simply integrates the net load duration curve to find the annual energy
generated by each type of unit.  It does an approximate accounting of scheduled outages.  We
also modeled a probabilistic production method (Booth-Baleriaux).  The probabilistic method
does not inherently consider scheduled outages because they are not random.  Scheduled outages
were incorporated by dividing the year into time blocks and scheduling outages for maintenance
within each block.  The probabilistic method is applied to each time block individually.

To quantify the differences between our simple load duration curve integration method and the
probabilistic method using time blocks for scheduled outages, we applied the two methods to a
test case.  The test case consisted of the dispatchable generation system described in the table
below, a 3900 MW peak load with PG&E's 1989 profile, and adjusted Fresno TMY data.

Availability Scheduled
Type Number Capacity   (Random)   Outage  
Nuclear   1  850 MW    .908    .252
Coal   8  250 MW    .963    .062
Combined Cycle   8  150 MW    .945    .062
Gas Turbine   9   50 MW    .965    .055

This generation system's scheduled outages were chosen so that units could be serviced in exact
quarterly time blocks.  They are not real scheduled outages.

The probabilistic method with scheduled outage time blocks assumed the following maintenance
schedule:

nuclear plant down in the fall,
one coal plant at a time down in winter and spring,
one combined cycle plant at a time down in fall and winter, and
one gas turbine plant at a time down in winter and spring.

This schedule balanced the loss of load probability among the seasons and minimized annual loss
of load probability.  Our load duration curve integration method accounted for scheduled outages
by comparing the energy computed by integration with the maximum possible energy from each
type of plant (the product of rated power, forced outage availability, and scheduled outage
availability).  If the integrated energy exceeds maximum energy, the plant is derated to make the
two energy values balance.  We also considered a third dispatching method based on one
suggested by Peter Lilienthal at NREL.  It uses the probabilistic method but incorporates the same
scheduled outage accounting method as our integration method.  That is, it derates a plant if
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necessary to ensure that its energy generation limit is not exceeded.  Derating is equivalent to
assuming that scheduled outages are random, like forced outages.  To compare the three
methods, we computed the energy displaced from each dispatchable plant when 500 MW of wind
or photovoltaic capacity was added to the system.  Energy displacement is found by exercising the
dispatching algorithm with and without the intermittent source.  Results from the two runs are
subtracted to find energy displacement.

Displaced Energy in TWh

Nuclear Coal Comb Cyc Gas Turb Value M$
500 MW Wind System

Probabil/Seasonal    0. 1.09   .75   .035   54.7
Integration/Derating    0. 1.17   .71   .006   52.7
Probabil/Derating    0. 1.21   .64   .035   52.6

500 MW PV System
Probabil/Seasonal    0.  .37   .57   .026   31.7
Integration/Derating    0.  .39   .58   .006   31.0
Probabil/Derating    0.  .49   .45   .032   29.8

The value of displaced energy was found using .021 $/kWh for coal operating cost, .039 $/kWh
for combined cycle, and .072 $/kWh for gas turbine (derived from EPRI's TAG economic
parameters).  Our integration method underestimates energy displacement from gas turbines, but
its value computation is fairly accurate.  The probabilistic method with derating for scheduled
outages is also fairly accurate and it makes a better estimate of gas turbine energy displacement,
but it requires greater computing time.

The object of the dispatching algorithm is to accurately estimate the value of energy displaced by
intermittent sources.  Our simple integration method does an adequate job, but we must keep in
mind that it underestimates energy displacement from peaking turbines.

Capacity Expansion Optimization

Optimization requires finding the technology mix for new capacity which minimizes levelized
annual cost subject to a reserve margin constraint.  The optimization our model employs is an
approximation from three perspectives:  1) as discussed above, the operating costs our model
calculates are approximate; 2) our reserve margin estimate is approximate; and 3) the optimization
process itself seeks a near optimum, not a true optimum.  The following describes our near
optimization process.

We search to find the combination of intermittent renewable energy technology (IRET), storage,
and dispatchable new capacity which minimizes cost.  To start the process, we select an IRET-
storage set.  That is, we select a new capacity value for wind, a value for PV, a value for solar
thermal, and a value for storage (storage may require two values: one for energy and one for
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power).  Using this IRET-storage new capacity set, we compute a net load duration curve.  Next,
we find a near optimum set of new dispatchable technology capacities which satisfies (provides
the required energy and power) the net load duration curve at near minimum cost.   We repeat
this process for different IRET-storage sets in a patterned search until we locate the IRET-storage
set which minimizes levelized annual cost for the entire system.  Since each IRET-storage set has
an "attached" minimum cost dispatchable set, finding the minimum cost IRET-storage set
minimizes cost for the entire system.

The method we use to find a near optimum (near minimum cost) new dispatchable capacity set is
the subject of the third main concern expressed above.  In Figure 3 we show a net load duration
curve with existing dispatchable technologies applied in merit order.  Merit order means that the
lowest operating cost technology is applied at the bottom where the most energy is produced
followed by the next least expensive operating cost technology and so on until the last technology
applied has the highest operating cost and provides the least energy.  Peak load exceeds total
existing capacity, and we call the difference a capacity gap which must be filled by new capacity. 
A true optimization will distribute the capacity gap among the different technologies in a way that
minimizes system levelized annual cost.  Sherali of VPI has a method for optimizing new capacity.
 His method will find the true optimum given that production costing (dispatching) is
approximated using the load duration curve integration method.  In other words, it is an exact
optimization to an approximate problem.  We do not use Sherali's method because it has a high
computational burden and it does not consider cost diversity.  Our method follows the following
procedure.  First, we assume that the entire capacity gap is inserted between each pair of adjacent
existing technologies which are arranged in merit order.  Each insertion location has a capacity
factor associated  with it.  We compute  the levelized annual cost
for each competing technology at this capacity factor.  (Levelized operating cost is a linear
function of capacity factor.)  Then, we use the computed costs in a logit apportionment to
determine the capacity share of each competing technology.  If the capacity gap is inserted
between base and intermediate technologies, then the capacity factor will be high and base and
intermediate plants will be favored in the logit apportionment because their levelized annualized
costs will be relatively low, but every competing technology will receive a share of the capacity
gap.  If the gap is inserted between intermediate and peaking technologies, the capacity factor will
be low, and intermediate and peaking technologies will be favored.
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Figure B3.  Capacity Gap Method

The number of insertion options is equal to the number of existing technologies minus one
because there are that many pairs of adjacent existing technologies between which the capacity
gap can be inserted.  For each option, we compute the share each technology will get of new
capacity.  We have added a new option to the model since our meeting.  We divide the capacity
gap up equally between each pair of existing technologies and use a logit apportionment to
determine the share of new capacity each technology gets.

We merit order new and existing technologies for each option and use our dispatching algorithm
to compute total levelized operating cost and add levelized capital cost to compute the total cost
for each option.  The option with the lowest cost is selected.  Keep in mind that we always add at
least some of each technology.  If the system is short of base capacity, then the option which
inserts the capacity gap between existing base and intermediate will probably be selected.  If the
system is pretty well balanced, then the equally distributed capacity gap will probably be selected.
 This method does not select an optimum expansion in any given year, but over time the
expansion is near optimum.  To illustrate this, we have compared our expansion method to
Sherali's method.  Our method includes price diversity through the logit apportionment.  We
incorporate price diversity into Sherali's method by using a cost distribution for each technology
and a Monte Carlo assignment of cost.  The final result is the average of all the Monte Carlo
results at each time.  Figures 4, 5, and 6 compare results for the two methods for a system where
load grows by 2% each year.
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Figure B-4.  Base Assets (Nuclear + Coal)
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Figure B-5.  Intermediate Assets (Combined Cycle)
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Figure B-6.  Peak Assets (Gas Turbines)

Our capacity gap expansion method tracks Sherali's true optimization method (with Monte Carlo)
very well.  Both of these methods use our load duration curve integration method to compute
levelized operating cost which is an approximation to true operating cost.  Because of this, neither
method gives a true optimization, but we have shown that our load duration curve integration
method makes a reasonably accurate estimate of operating cost.  From this, we conclude that our
optimization method combined with our dispatching method will make reasonable expansion
estimates.  We have neglected an important element in this logic.  We have not discussed reserve
margin.  An approximate method for estimating reserve margin is planned, but we have not yet
evaluated its impact on proper valuation of IRET's.

Conclusion

We have addressed the main concerns raised at our quarterly review meeting.  In addressing them
we have identified areas where improvements can be made.  In some cases the improvements have
been made.  We conclude that our approximations are reasonable for the type of model we are
constructing.  It is not a utility tool for planning capacity expansion.  It is a model for projecting
the effects various policy strategies will have on IRET penetration trends.  We are planning to
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have the model reviewed by people familiar with utility capacity expansion planning.  The first
review scheduled is with Neal Balu, EPRI's AGEAS project manager, in early April.  We are in
the process of getting an AGEAS test case from Leslie Buttorff at Stone and Webster and will use
it to compare our model's results with those from AGEAS.

If you have any questions or suggestions about the work covered in this memo, please call us:
Mike Edenburn 845-8297 or Gene Aronson 844-4348.
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APPENDIX C.  Comparison of the Dispatchable Capacity
Expansion Method with the Exact Sherali Method

For a given anticipated load demand curve, a given set of dispatchable technologies with
associated annual levelized capital and operating costs, and set of exising, on-line capacities for
each technology, the exact solution of the optimal expanded despatchable technology
configuration is found by a method devised by Sherali [Sherali, 1985], under the assumption that
energy production is computed by the “integration” method, described in the main body of this
report, and in Appendix A .  By the optimal configuration we mean that configuration which
minimizes the system life-cycle cost.  The integration method of energy production and a
comparison between it and the Booth-Baleriaux probabilistic method is found in the body of this
report and in Appendix B.  If there are no existing capacities, the solution is very simple, and
given by the well-known “screening curve” method [Steiner, 1957].

Let the subscript i refer to the i-th technology in a system consisting of N technologies.  Total
system future life-cycle cost is given by

(C-1)                                            C = Σ CciBi + CoiEi(Bi + Fi) 

where the sum is on i = 1,2, ..., N, and   

C is the total future annualized cost, $/yr).

Cci is the levelized annual capital cost (of the i-th technology), $kW-yr.

Bi is the new capacity addition, kW.

Coi is the levelized annual operating cost, $/kWy.

Ei is the energy produced, kWy.

Fi is the future (derated) existing capacity, including capacity under
construction that will be on-line at the future time, less retirements
that will be in effect at that time, kW.

The Sherali method assumes that all capacities have been derated
to account for forced and scheduled outages.  The energy
production is computed by “merit ordering” of the technologies,
with the lowest operating cost technology dispatched first, the
next-lowest second, etc., thus guaranteeing the minimal operating
 cost for the system.  Therefore, we  order the  subscripts i by
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(C-2)                                               Co1 ≤ Co2 ≤ ... ≤ /CoN.

Let the load demand curve be λ(u), where λ is in kW and u is that
part of the year in which the expected load will exceed λ(u). 
The quantity u is also the capacity factor associated with the
load λ(u).  The load is a monotonically non-increasing, positive
function of u defined over the domain 0 ≤ u ≤ 1, see Figure C-1.
 Since the capacities are already derated, the energy produced is

Ui            

Ei = ∫    u(λ) dλ,
      Ui + 1             

(C-3)
i       

Ui = Σ  Bξ + Fξ
ξ=1   

Figure C-1.  Load Demand and Merit Ordering

The function u(λ) is the inverse load demand defined over the
domain [0, λ(0)].  A constraint on the problem is that all demand
must be satisfied, i.e.,

(C-4)                                                       UN ≥ λ(0). 

The exact solution, which finds the Bi so that C, equation (C-1), is minimized, given conditions in
equations (C-2) through (C-4) was found by Sherali to involve a somewhat complicated
mathematical programming problem described in the 1985 reference.

We coded the Sherali method and tested it against various configurations.  In spite of having
coded the method, we decided it was not appropriate for use in our capacity expansion module
for three reasons:

1. It was quite complicated, although it did not generally use excessive
computer time.

2. The preset derating requirements clouded the interplay between forced
and scheduled outages.

3. It did not allow cost diversity among the technologies.

The third reason was the most compelling, since we feel cost diversity is an important feature of
the module.
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In lieu of using the Sherali method for capacity expansion, we
attempted to devise a method which tended to emulate Sherali’s
solutions for similar conditions, resulting in the heurisitic
method described in Appendix A.  Our heuristic method was
compared against Sherali’s method for a test case, whose results
are shown in Figure C-2, C-3, and C-4.  We used the “typical”
initial load curve shown in figure C-1, and assumed a system of
three technologies: “base,” intermediate, and peak, with
appropriate capital and accounting costs.  We chose a set of
initial capacities and a load growth of 2% per year.  A
simulation was run with each system, our heuristic solution and
Sherali’s exact solution, expanding over a 40 year period.

Since the Sherali method does not allow cost diversity, we simulated it by running the Sherali
simulation as a 400-pass Monte Carlo, with capital and operating cost as independent random
variables at each time step in each pass.  The plotted results are the average capacities over all
passes at each time step;  that is, if Yi(t,j) is the total capacity of the i-th technology at the t-th
time step of the j-th Monte Carlo run, the resultant capacity at the t-th time is

Yi(t) = Σ Yi(t,j)/400

where the sum is on j from 1 to 400.
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Figure C-2.  Base Capacity
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Figure C-3.  Intermediate Capacity
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Figure C-4.  Peak Capacity

In the heuristic solution, cost diversity is accomplished by a
logit function which assumes that the nominal cost per unit new
capacity of a given technology operating at a specified capacity
utilization factor f, is

ki = Cci + Coiu,

and that the various values of ki are independent random variables generated by an underlying
Weibull distribution with location parameter ki and shape parameter γ (the same value of γ, -10, is
used for all random variables) - see Appendix E for a discussion of the logit function.  For the
Weibull distribution, γ = -10, the mean and variance of the random variables ki, associated with ki,
are

E{Ki} = Γ(1 - 1/γ)ki = 0.95ki

σ2{Ki} = [Γ(1 -2/γ) - Γ2(1 -1/γ)]ki
2 = 0.01311ki,
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where Γ is the gamma function.  Thus the standard deviation is
approximately 11.5% of the nominal cost for γ = -10 (the square
root 0.01311 is 0.1145).

Modeling the random cost structures in the Sherali method to exactly copy the logit structure is
not possible since the Sherali method does not explicitly use the capacity utilization factor and
there does not appear to be a known pair of independent distributions whose sum is Weibull. 

However, we feel quite strongly that the results of the Monte Carlo simulations are not sensitive
to the exact underlying cost probability distributions.  For the Monte Carlo simulations, let κi and
ωi  be the random variables associated with the capital and operating cost, respectively, for the i-th
technology.  We chose these random variables to be independent gaussian (normal) with mean
and variance

E{κi} = 0.95Cci, E{ωi = 0.95Coi,

σ2{κi} = 0.01311Cci
2(Cci + Coi)

2/(Cci
2 + Coi

2),

σ2{ωi} = 0.01311Coi
2(Cci + Coi)

2/(Cci
2 + Coi

2),

resulting in the statistical properties

E{κi + ωi} =  0.95(Cci + Coi),

σ2{κi + ωi} = 0.01311(Cci + Coi)
2,

that is, as though all technologies were operating at the value u = 1 for purposes of defining the
underlying cost probability density functions.  This formulation implies a somewhat larger
variance for the Monte Carlo random variables than in the neuristic model, but should not affect
the final results appreciably.  As the absolute value of γ increases, the Weibull distribution tends to
resemble the gaussian distribution.  The resemblance is quite close at γ = -10.

As shown in Figure C-2, C-3, and C-4, the results of the capacity expansion methodology
described in Appendix A, and used in the Sandia capacity expansion and energy production
module, compare very favorably with the Sherali Monte Carlo results.  In all these simulations,
the look-ahead time and all construction times were set to five years. 
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APPENDIX D.  Comparison of Electric Utility Capacity Expansion
Projections Between Sandia's Capacity Expansion

Model and EGEAS using an EGEAS Test Case

   Date: July 28, 1992

     To: Distribution

   From: Mike Edenburn and Gene Aronson, Strategic Technologies Dept. (6904),
         Sandia National Laboratories

Subject: Comparison of Electric Utility Capacity Expansion Projections Between
         Sandia's Capacity Expansion Model and EGEAS using an EGEAS Test Case

Sandia's electric utility capacity expansion model has been developed to provide DOE/CE's Office
of Utility Technologies with a sound analytical tool to assist in energy policy analysis.  The model,
which can be used as a module in more general energy analysis models, projects long term
renewable energy technology (RET) expansion trends into regional electric utility markets.  It
explores the effects of energy policy options on utility capacity expansion trends.  The model uses
less detailed algorithms than models used by utilities for capacity expansion planning, but it
follows their basic principles.  Validation is an important part of our model development project. 
One validation exercise has been to compare our model's projections with those from a more
comprehensive and generally accepted model.  We have selected EPRI's (Electric Power Research
Institute) EGEAS (Electric Generation Expansion Analysis System) for the comparison.

EGEAS was developed by EPRI and is used by several large U.S. electric utilities for capacity
expansion planning.  The EGEAS model is described in EPRI report EPRI EL-2561 published in
August, 1982.  Stone and Webster Management Consultants manage and distribute the model and
coordinate an active users' group.  Data for the test case was selected and supplied by Joel
Halvorson of Stone and Webster, and he ran the test case using EGEAS to get results for
comparison.

Previous validation exercises have addressed elements of the Sandia model: aggregated generation
units, averaged intermittent source production data, a simplified production costing algorithm,
and a simplified optimization process.  The conclusion drawn from these exercises was that each
of our simplified model elements is sufficiently accurate to be appropriate for use in a regional,
policy analysis model, but it is possible that the inaccuracies in several "sufficiently accurate"
elements working together can combine to make unrealistic projections.  To explore this
possibility, we have compared our model's results to those for a test case run using EGEAS.  The
test case was derived from standard test case R6112.  Input for the test case is discussed below.
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Existing, Under Construction, and New Generation Capacity

The EGEAS test case starts in 1987 with the existing and under construction capacity shown in
Table 1.  A more detailed listing is shown in Attachment A.

Table 1.  Existing and Under Construction EGEAS Capacity (1987)

Type Units Total Capacity MW

Existing
Nuclear   2       2400
Coal  12       3612
Oil-Steam   9       2596
Oil Combined Cycle   1        286
Oil Combustion Turbine  30       1594
Hydro   2        100
Pumped Hydro Storage   4        425
Photovoltaic   2         15

Under Construction
Nuclear (on line 1990)   1       1200
Oil Combined Cycle   2        571
  (on line 1989 & 1992)

The EGEAS test case selected from the technologies listed in Table 2 for new capacity additions.
 For more details, see Attachment A.

Table 2.  New Capacity Options for EGEAS

Nuclear-LWR
Coal-Advanced pulverized with FGD
Oil steam
Oil combustion turbine
Gas combined cycle, standard and advanced
Gas advanced combustion turbine
Pumped hydro storage
Photovoltaic
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The Sandia model uses aggregated capacity values and does not consider individual units.  It
accounts for existing capacity and capacity under construction separately, but, for simplicity, we
added capacity under construction to existing capacity for this test case.  Detailed input data for
the Sandia model is included in Attachment B.

Table 3.  Sandia Model Existing Capacity (1987)

Type Capacity (MW)
Nuclear     3600
Coal     3612
Oil Steam     2600
Oil Combined Cycle      860
Oil Combustion Turbine     1590
Hydro      100
Pumped Hydro Storage      394
Photovoltaic       15

To simplify our model's input, we assumed that new and existing units within a technology are
identical and have the same parameter values except for coal.  Old and new coal were treated as
separate technologies.  We restricted the new technology capacity expansion options for the
Sandia model to those which we expected to be the most competitive.  These capacity expansion
options are shown in Table 4.

Table 4.  Capacity Expansion Options for the Sandia Model

Type Corresponding EGEAS Technology

Nuclear Advanced LWR
Coal Advanced Pulverized Coal with FGD
Oil Combined Cycle Oil Combined Cycle
Oil Combustion Turbine Oil Combustion Turbine
Gas Combined Cycle Standard Gas Combined Cycle
Gas Combustion Turbine Advanced Gas Combustion Turbine
Pumped Hydro Storage Pumped Hydro Storage
Photovoltaic Photovoltaic #2

We used the same parameter values for the Sandia model capacity expansion options that EGEAS
used for its corresponding options to the extent possible.  (These values are shown in the
appendix.)  There were some differences.  The Sandia model does not consider a unit's reserve
capacity or loading blocks.  We treat interest during construction just like construction cost,
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although, in reality, it is treated differently for tax purposes.  We do not consider spinning reserve
or startup costs.  EGEAS's forced outage rates change with time while the Sandia model uses
constant values.  To account for changing forced outage rates, the Sandia model uses average
values.  There is a slight difference in how the two models compute depreciation for tax purposes.
 We used parameter values which most closely duplicated EGEAS depreciation schedules.  In
EGEAS, each generation unit has a service date when it first came on line and a plant life, and
these two parameters determine when the plant will be retired.  Since the Sandia model
aggregates, it does not retire individual units.  We were not able to accurately match EGEAS
retirement schedules with simple retirement rates, so we altered the Sandia model to include
EGEAS retirement schedules.  To summarize, we attempted to duplicate parameter values used in
EGEAS, but there are small differences.

Load and Intermittent Source Generation Data

Both models used a peak 1988 load of 9400 MW, a load growth rate of 1% per year, and a load
profile defined by EGEAS's data file HOURLOAD.SYB.  This load profile consists of 8736
hourly data points covering 364 days.  The Sandia model will not generally use this large a data
set.  We used a "complete" year for the test case to avoid differences associated with data
quantity so that we can concentrate on differences caused by model algorithms.

Photovoltaic generation was defined by EGEAS's data file HOURGENR.PV2.  While not
intermittent, hydro power generation is treated like intermittent generation because it is subtracted
from the load to get a net load.  There are a variety of hydro power types.  Run-of-the-river hydro
is intermittent with power generated when river flow is available, and this usually follows a
seasonal pattern.  At the other extreme, hydro power can be completely dispatchable and used at
any time during the year.  We assumed that hydro is dispatchable and we subtracted its power
from the year's peak generation hours with the appropriate energy restriction.

Our model did not previously include energy storage, which is an important option in EGEAS. 
After testing several simple models for storage which did not work well, we designed one which
"optimizes" storage use.  Storage must be dispatched with an optimum schedule to obtain its full
value.  Simple models tended to displace the same generation technology during high load hours
used for recharge during low load hours.  Displacing and recharging with the same technology
gives storage a net economic loss due to storage inefficiency.  To get its full benefit, storage
should only be used to displace a generation technology if the recharging technology's operating
cost divided by storage efficiency is lower than the displaced technology's operating cost.

Our present storage model arranges daily loads in order of size.  The highest load is paired with
the lowest, the second highest with the second lowest, and etc.  Displaced energy for the high
load hour must be recharged during the low load hour in the pair.  Storage power is adjusted, if
necessary, to insure that the last unit of displaced energy is more valuable than the last unit of
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recharge energy.  The appropriate daily storage energy limit is applied.  This scheme is not exactly
optimum because it only allows discharge and recharge within hour pairs.  Making discharge and 
recharge decisions across multiple hours is required to  obtain a true optimum.  Because it is not a
true optimum, our storage algorithm may tend to slightly undervalue and thus underuse energy
storage.

Comparison of Projections from the Two Models

It is unrealistic to expect identical results from Sandia's model and EGEAS.  On the other hand, to
be useful, results from the Sandia model should follow the same capacity expansion trends as
those from EGEAS.

There are several reasons why identical results cannot be obtained:

1. Units are aggregated by technology in Sandia's model.  EGEAS buys integral size
units while the Sandia model can buy any size.  EGEAS uses a retirement date for
each unit while Sandia's model uses a retirement rate.  These Sandia model
simplifications are appropriate for a regional model but not for an individual utility.

2. The Sandia model uses a simplified production costing algorithm (instead of a
probabilistic algorithm) which underestimates the energy generated by peaking plants.
 This will slightly bias the value of new capacity additions.

3. The Sandia model's optimization scheme is sub-optimal and will give slightly different
results than a true optimization.

4. EGEAS optimizes over a 30 year time block and finds the optimum, integrated
expansion plan.  Selecting a particular plant depends on future as well as past
capacity additions.  Sandia's model optimizes one year at a time using levelized
capital and operating cost over each plant's life.  It's optimization accounts for
existing but not for future capacity additions.

5. EGEAS uses much more detailed input data: escalating capital and operating cost
schedules, reserve capacity, capacity blocks, changing forced outage rate schedules,
special treatment of interest during construction, spinning reserve and startup costs
(spinning reserve and startup cost were not used by EGEAS in the test case), and etc.

6. Sandia's model assumes cost diversity.  The cost of a technology is not a single value
and a technology will be selected for some capacity even though its most probable
cost is slightly higher than a competitor's most probable cost.  EGEAS does not use
cost diversity.  Cost diversity is not appropriate for a single utility model, but it is
appropriate for a regional model.
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The EGEAS model's dynamic programming option projects the capacity additions shown in Table
5.

Table 5.  New Capacity Additions Projected by EGEAS

Type Size MW Year

Coal-Advanced Pulverized with FGD   750 1995
Coal- "   750 1997
Coal- "   750 1999
Coal- "   750 2001
Gas-Combined Cycle   220 2004
Gas- "   440 2005
Gas- "   440 2006
Gas- "   220 2007
Coal-Advanced Pulverized with FGD   750 2008
Storage-Pumped Hydro   350 2008
Storage- "   350 2010
Storage- "   350 2011
Gas-Combined Cycle   220 2011
Coal-Advanced Pulverized with FGD   750 2012
Coal- "   750 2013
Oil-Combustion Turbine    75 2015
Coal-Advanced Pulverized with FGD   750 2016
Gas-Advanced Combustion Turbine   130 2016
Oil-Combustion Turbine    75 2016
Oil- "   150 2017
Gas-Advanced Combustion Turbine   130 2017

Total capacity asset projections from EGEAS are plotted in Figure 1.  Figure 2 shows the
capacity assets projected by Sandia's model.  At the end of the 30 year expansion period, the two
models are in very close agreement.  The main difference between the two models is in the timing
of coal and gas combined cycle asset additions.  EGEAS installs 3000 MW of coal between 1995
and 2001 followed by no new coal installations between 2002 and 2008.  The Sandia model
installs only 800 MW of coal between 1995 and 2001 but continues steady coal installation and
catches up with EGEAS in 2008.  The Sandia model lags EGEAS in coal installations, but it
compensates by leading EGEAS in gas combined cycle installations.  The difference in timing is
probably due to EGEAS's ability to optimize over a 30 year time block in combination with its
restraint to use specific unit sizes.  A less significant difference is that the Sandia model installs
more gas combustion turbines than EGEAS, in part because it uses a higher reserve margin than
EGEAS and in part to help compensate for the time lag in coal expansion.  In spite of these
differences, agreement in trends between the two models is very good.  While both models
considered only one true intermittent renewable source--photovoltaics which neither model
elected to install--the models agree closely on pumped hydro energy storage which is treated like
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an intermittent source in the Sandia model's optimization process.  We will discuss projections
one technology at a time.

Figure D-1.  EGEAS Test Case Assets (EGEAS)
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Figure D-2.  EGEAS Test Case Assets (Sandia Model)

Nuclear--EGEAS projects that no new nuclear capacity will be added beyond that under
construction in 1987.  The Sandia model projects a very small nuclear addition due to cost
diversity.

Coal--Coal capacity assets for the two models are compared in Figure 3.  EGEAS builds 3000
MW of new coal plants in the six years between 1995 and 2001.  Then, it builds no new coal
plants until 2008.  The Sandia model builds 800 MW of new coal plants between 1995 and 2001
but continues to build 2400 MW through 2008.  In 2008, the coal assets for the two models are
roughly equal.  From 2008 to 2017 the two models agree very closely, and coal assets for the two
models are nearly equal in 2017, the final year.  As expected, the expansion details are different
but the trends agree very well.  Part of the detail difference is due to cost diversity.  Reducing cost
diversity increases coal expansion between 1995 and 2001 in Sandia's model, but not nearly
enough to match EGEAS expansion for those years.  We believe that most of the difference is due
to EGEAS optimizing over a 30 year time block using specified unit sizes in contrast to Sandia's
model optimizing one year at a time without unit size restrictions.
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Figure D-3.  EGEAS Test Case Comparison--New Coal

Oil-Steam--Neither model adds oil-steam capacity.  Both models follow the same retirement
trend because that was imposed upon them.  Sandia's model might have added a little oil-steam
capacity due to cost diversity, but oil-steam was not allowed to compete.

Oil Combined Cycle--Oil combined cycle is not a competitor in EGEAS.  The Sandia model
allows it to compete but only adds a very small amount because of cost diversity.

Gas Combined Cycle--Over the 30 year expansion period, EGEAS adds 1540 MW of gas
combined cycle.  Sandia's model adds 1750 MW.  Trends for the two models are in good
agreement, although installation timing is different.  Sandia's model leads EGEAS in gas combined
cycle expansion as can be seen in Figure 4.  This lead compensates for its lag in coal expansion as
discussed above.  In Figure 5, we plot coal assets and the sum of coal and gas combined cycle
assets for both models.  The sums agree very well between the two models.  Sandia's model
projects that the sum of coal and gas combined cycle expansion will be slightly less than that
projected by EGEAS between 1995 and 2001.  This small difference is made up with gas
combustion turbines in Sandia's model, explaining why gas turbines are introduced earlier by
Sandia's model than by EGEAS.  Why does EGEAS make a big coal expansion between 1995 and
2001 followed by a big gas combined cycle expansion between 2001 and 2008 while Sandia's
model tends to project the reverse order?  Gas combined cycle operating costs are escalating
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faster than coal costs because of fuel cost escalation.  This argues in favor of installing gas
combined cycle plants earlier when they are less expensive  is the trend projected by Sandia’s
model.  We believe that EGEAS installs coal plants first because
its optimization over a 30 year time block sees an advantage to
installing coal plants between 1995 and 2001.  The advantage is
probably due to interfaces with other technologies scheduled for
installation in the future.

Figure D-4.  EGEAS Test Case Asset Comparison--Gas Combined Cycle
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Figure D-5.  Egeas Test Case Asset Comparison--New Coal
+ Gas Combined Cycle

Oil Combustion Turbines--EGEAS adds 300 MW of new oil combustion turbines at the end of
the design period.  Sandia's model adds almost no oil combustion turbines.  What it does add is
due to cost diversity.  EGEAS adds oil combustion turbines because a limit was imposed on gas
combustion turbines.  Without the limit, gas combustion turbines would have been selected
instead.

Gas Combustion Turbines--EGEAS adds 260 MW of gas combustion turbines at the end of the
design period.  The Sandia model adds 800 MW split between the 1994 to 2001 time period and
the end of the design period.  Part of the difference is due to our approximation for reserve
margin which is higher than that used by EGEAS.  Part of the difference is due to compensation
for the Sandia model's lag in coal expansion between 1995 and 2001.  Part of the difference is due
to the Sandia model's cost diversity.  Reducing diversity reduces gas turbine expansion.  If oil and
gas combustion turbines are combined, EGEAS adds a total of 560 MW compared to the Sandia
model's 800.  Results for both oil and gas combustion turbines are shown in Figure 6.  Differences
between the two models have several explanations, but the important observation is that the
trends agree fairly well.
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Figure D-6.  EGEAS Test Case Asset Comparison--
New Gas and Oil combustion Turbines

Pumped Hydro Energy Storage--The two models agree very well for pumped hydro energy
storage.  This is particularly noteworthy because energy storage is not easy to model and because
the Sandia model treats energy storage like an intermittent in its optimization process.  Storage
results are shown in Figure 7.
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Figure D-7.  EGEAS Test Case Asset Comparison--Pumped Hydro Storage

Our overall conclusion is that trends projected by Sandia's model agree very well with those
projected by EGEAS.  We believe that this is an important conclusion because it supports using a
relatively simple but conceptually sound, regional, electric utility capacity expansion model for
evaluating energy policy options.
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Attachment A.  Selected Parameter Values for EGEAS Electrical Generation Technologies

Existing Capacity in 1987
         Capacity Forced Scheduled Heat Rate Fuel Pric Fuel Cost Fuel    Fixed O&M   Variable

Type  #      Installed   Life        MW   Outage    Outage   BTU/kWh  $/MBTU    $/kWh  Escal    $/kW-Yr &M $/kWh
Nuclear 101 1981 40 1200 .149 .135 10,100  .76 .0077 .052 33.1 .00093
Nuclear 102 1983 40 1200 .149 .135 10,100  .76 .0077 .052 33.1 .00094
Coal 103 1968 40  600 .155 .115  9,800 1.61 .0158 .051 21.2 .00563
Coal 104 1972 40  600 .155 .115  9,800 1.61 .0158 .051 21.2 .00564
Coal 105 1971 40  400 .124 .096  9,910 1.61 .0160 .051 21.2 .00565
Coal 106 1973 40  400 .124 .096  9,910 1.61 .0160 .051 21.2 .00566
Coal 107 1953 40  202 .081 .058 10,460 1.61 .0168 .051 21.2 .00567
Coal 108 1955 40  202 .081 .058 10,460 1.61 .0168 .051 21.2 .00568
Coal 109 1957 40  202 .081 .058 10,460 1.61 .0168 .051 21.2 .00569
Coal 110 1959 40  202 .081 .089 10,460 1.61 .0168 .051 21.2 .00570
Coal 111 1963 40  201 .081 .058 10,460 1.61 .0168 .051 21.2 .00571
Coal 112 1965 40  201 .081 .058 10,460 1.61 .0168 .051 21.2 .00572
Coal 113 1966 40  201 .081 .058 10,460 1.61 .0168 .051 21.2 .00573
Coal 114 1967 40  201 .081 .058 10,460 1.61 .0168 .051 21.2 .00574
Oil-Steam 115 1976 40  800 .176 .077  9,000 3.68 .0331 .097  4.3 .00442
Oil-Steam 116 1979 40  400 .124 .096  9,300 3.68 .0342 .097  4.3 .00443
Oil-Steam 117 1952 40  200 .081 .058  9,745 3.68 .0359 .097  4.3 .00444
Oil-Steam 118 1953 40  200 .081 .058  9,745 3.68 .0359 .097  4.3 .00445
Oil-Steam 119 1953 40  200 .081 .058  9,745 3.68 .0359 .097  4.3 .00446
Oil-Steam 120 1954 40  199 .081 .058  9,745 3.68 .0359 .097  4.3 .00447
Oil-Steam 121 1957 40  199 .081 .058  9,745 3.68 .0359 .097  4.3 .00448
Oil-Steam 122 1958 40  199 .081 .058  9,745 3.68 .0359 .097  4.3 .00449
Oil-Steam 123 1961 40  199 .081 .058  9,745 3.68 .0359 .097  4.3 .00450
Oil Combined Cycle 158 1986 40  286 .100 .077  7,500 3.66 .0275 .097  7.0 .00192
Oil Combustion Turbine 124 1969 30   53 .105 .038 11,500 3.93 .0452 .097   .5 .00518
Oil Combustion Turbine 125 1969 30   53 .105 .038 11,500 3.93 .0452 .097   .5 .00519
Oil Combustion Turbine 126 1969 30   53 .105 .038 11,500 3.93 .0452 .097   .5 .00520
Oil Combustion Turbine 127 1969 30   53 .105 .038 11,500 3.93 .0452 .097   .5 .00521
Oil Combustion Turbine 128 1970 30   53 .105 .038 11,500 3.93 .0452 .097   .5 .00522
Oil Combustion Turbine 129 1970 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00523
Oil Combustion Turbine 130 1970 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00524
Oil Combustion Turbine 131 1970 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00525
Oil Combustion Turbine 132 1972 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00526
Oil Combustion Turbine 133 1972 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00527
Oil Combustion Turbine 134 1974 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00528
Oil Combustion Turbine 135 1974 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00529
Oil Combustion Turbine 136 1975 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00530
Oil Combustion Turbine 137 1975 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00531
Oil Combustion Turbine 138 1975 30   52 .105 .038 11,500 3.93 .0452 .097   .5 .00532
Oil Combustion Turbine 139 1975 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00533
Oil Combustion Turbine 140 1978 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00534
Oil Combustion Turbine 141 1978 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00535
Oil Combustion Turbine 142 1978 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00536
Oil Combustion Turbine 143 1978 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00537
Oil Combustion Turbine 144 1978 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00538
Oil Combustion Turbine 145 1978 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00539
Oil Combustion Turbine 146 1980 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00540



77

Attachment A. Selected Parameter Values for EGEAS Electrical Generation Technologies (Cont.)

Existing Capacity in 1987
          Capacity Forced Scheduled Heat Rate Fuel Pric Fuel Cost Fuel Fixed O&M Variable

Type                       #      Installed   Life      MW   Outage    Outage   BTU/kWh  $/MBTU    $/kWh  Escal     $/kW-Yr O&M $/kWh
Oil Combustion Turbine 147 1980 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00541
Oil Combustion Turbine 148 1980 30   51 .105 .038 11,500 3.93 .0452 .097   .5 .00542
Oil Combustion Turbine 149 1980 30   50 .105 .038 11,500 3.93 .0452 .097   .5 .00543
Oil Combustion Turbine 150 1982 30   50 .105 .038 11,500 3.93 .0452 .097   .5 .00544
Oil Combustion Turbine 151 1982 30   50 .105 .038 11,500 3.93 .0452 .097   .5 .00545
Oil Combustion Turbine 152 1982 30   50 .105 .038 11,500 3.93 .0452 .097   .5 .00546
Oil Combustion Turbine 159 1987 40  100 .105 .038  9,500 3.66 .0348 .097   .5 .00547
Hydro 153 1983 50   55 .0075 .000     NA   NA    NA   NA 10.1 .00174
Hydro 154 1986 50   45 .0075 .000     NA   NA    NA   NA 10.1 .00175
Pumped Hydro Storage 155 1985 50  105 .015 .000     NA   NA    NA   NA  3.6 .00369
Pumped Hydro Storage 160 1980 50   90 .030 .000     NA   NA    NA   NA  3.6 .00370
Pumped Hydro Storage 161 1982 50  130 .020 .000     NA   NA    NA   NA  3.6 .00371
Pumped Hydro Storage 162 1987 50  100 .015 .000     NA   NA    NA   NA  3.6 .00372
Photovoltaic 156 1982 40    5 .100 .135     NA   NA    NA   NA  9.4 .00889
Photovoltaic 157 1982 40   10 .100 .135     NA   NA    NA   NA  9.4 .00890

Under Construction Capacity in 1987
          Capacity Forced Scheduled Heat Rate Fuel Pric Fuel Cost Fuel Fixed O&M Variable

Type  #      Installed   Life         MW   Outage    Outage   BTU/kWh  $/MBTU    $/kWh  Escal     $/kW-Yr O&M $/kWh
Nuclear 163 1990 30 1200 .149 .135 10,100  .76 .0077 .052 33.1 .00093
Oil Combined Cycle 164 1989 40  286 .100 .077  7,500 3.66 .0275 .097  7.0 .00192
Oil Combined Cycle 165 1992 40  286 .100 .077  7,500 3.66 .0275 .097  7.0 .00191
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Attachment A. Selected Parameter Values for EGEAS Electrical Generation Technologies (Cont.)

Capacity Expansion Options
       Installed          Capacity Forced Scheduled Heat Rate Fuel Pric Fuel Cost Fuel Fixed O&M Variable

Type                       #     Cost $/kW    Life        MW   Outage    Outage   BTU/kWh  $/MBTU    $/kWh  Escal     $/kW-Yr O&M $/kWh
Nuclear LWR 201 2952 30 1100 .213 .135 10,220  .76 .0078 .052 33.1 .00092
Nuclear LMFBR 202 2228 30 1100 .129 .135  9,050  .53 .0048 .052 33.1 .00090
Coal Steam with FGD 203 1264 40  500 .195 .096  9,850 1.61 .0159 .051 21.2 .00562
Coal Regenerative & FGD 204 1420 40  500 .184 .096 10,430 1.61 .0168 .051 21.7 .00562
Coal Adv Pulverized FGD 205 1266 40  750 .146 .096  8,570 1.61 .0138 .051 20.7 .00438
Coal Solid SRC 206 1053 40  500 .170 .096  9,400 4.57 .0430 .051  7.3 .00753
Coal Atmos Fluid Bed 207 1214 40  500 .164 .096  9,710 1.61 .0156 .051 17.6 .00697
Coal Presur Fluid Bed 208 1494 40  250 .157 .096  9,421 1.61 .0152 .051 31.1 .00652
Coal Gas/CC TEX 209 1470 40  600 .128 .077  9,010 1.61 .0145 .051 30.5 .00326
Oil Steam 210  626 30  500 .170 .096  9,400 2.52 .0237 .096  4.3 .00441
Gas Combined Cycle 211  489 30  220 .049 .077  8,150 2.23 .0180 .100  7.0 .00191
Gas Adv Combined Cycle 212  530 30  390 .025 .077  7,900 2.23 .0176 .100  8.7 .00191
Oil Combustion Turbine 213  323 30   75 .043 .038 11,800 2.52 .0300 .096   .5 .00517
Gas Adv Combustion Turb 214  299 30  130 .043 .038 11,000 2.23 .0250 .100   .5 .00449
Oil Fuel Cell 215 1512 30   10 .114 .038  8,300 3.66 .0304 .097 22.6 .00753
Oil Advanced Fuel Cell 216 1403 30    2 .074 .038  6,450 3.66 .0236 .097  5.4 .02034
Hydro 217 1659 50  100 .029 .000     NA   NA    NA   NA 10.1 .00173
Coal Gas (Hydro) 218 1385 30  600 .128 .077  9,010 1.61 .0145 .051 30.6 .00327
Pumped Hydro Storage 219  770 50  350 .050 .038     NA   NA    NA   NA  3.6 .00368
Comp Air Rock Cav Stor 220  678 25  220 .056 .038  4,000 3.93 .0157 .097  2.2 .00191
Battery Storage 221  912 30   20 .025 .038     NA   NA    NA   NA  1.5 .00728
Photovoltaic # 1 222 2809 40    5 .054 .135     NA   NA    NA   NA  9.4 .00888
Photovoltaic # 2 223 2850 40    6 .048 .135     NA   NA    NA   NA  8.5 .00720
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Attachment B.  Sandia Electric Utility Capacity Expansion Model Parameters,  EGEAS Test Case

Technology Parameters
Nuclear  Old Coal New Coal Oil-Steam Oil-CC   Oil-CT   Gas-CC   Gas-CT   Hydro    Storage  Photovoltc

Type Adv LWR Adv Pulv Combnd Cyc Combst Trb Combnd Cyc Combst Trb Pump hydro PV2
Initial Capacity  MW 3600 3612 0 2600  860 1590    0    0  100  382   15
Capital Cost  $/kW 2952 No New 1266 No New  628  323  489  299 No New  923 2920
Capital Cost Escalation 0 NA 0 NA -.01 0 -.01 0 NA -.01 0
System Life  Yr 30 40 40 40 40 30 30 30 50 50 40
Energy Capacity  GWh NA NA NA NA NA NA NA NA 430   2.61 NA
Storage Efficiency NA NA NA NA NA NA NA NA NA .75 NA
O&M Fixed Rate $/kW-Yr 33.1 21.2 20.7  4.3  7.0  0.5  7.0 0.5 10.1 3.6  8.5
O&M Variable Rate $/kWh .00092 .00568 .00438 .0045 .00191 .00517 .00191 .00449 .00173 .00368 .00720
O&M Escalation .02 .01 .01 0 -.005 .01 -.005 .01 -.01 -.01 .01
Heat Rate  BTU/kWh 10220 10100  8570  9450  7500 11800  8150 11000 NA NA NA
Base Fuel Price  $/MBTU 0.76 1.61 1.61 3.68 3.66 2.52 2.23 2.23 NA NA NA
Initial Fuel Cost $/kWh .0078 .0163 .0138 .0348 .0275 .030 .018 .025 NA NA NA
Fuel Escalation .002 .001 .001 .045 .045 .044 .048 .048 NA NA NA
Forced Outage Rate .249 .142 .171 .137 .100 .043 .049 .043 .000 .000 .000
Scheduled Outage Rate .135 .089 .096 .070 .077 .038 .077 .038 .000 .000 .000
Depreciation Period Yr 16 NA 16 NA 21 16 21 16 NA 21 16
Construction Time  Yr 8 NA 4 NA 2 1 2 1 NA 8 2
Retirement Rate  1/Yr .00 Schedule .00 Schedule .00 Schedule .00 .00 .00 .00 .00

General Economic Parameters (Same for all technologies in this test case)
Salvage Value  $/kW 0
General Inflation Rate .05
Fed Income Tax Rate .34
State Income Tax Rate .04
Insurance Rate .01
Price Year 1987
Discount Rate .10
Loan Payment Period  Yr 30
Loan Interest Rate .07
Down Payment Fraction .38
Property Tax Rate .01
Fed Invest Tax Credit 0
State Invest Tax Cred 0
Depreciation Method 1.5 Declinining Balance switching to Line
Energy Tax Credit 0
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APPENDIX E.  The Logit Function

The material in this appendix is extracted, in
modified form, from [Resiter, 1982]. 
Suppose a decision maker has several
options to supply a certain need.  In our
case, he may choose among different
technologies to build physical assets to
satisfy (electrical) energy demand.  In a very
natural way, he would choose the technology
with the least marginal cost.  Suppose there
are N choices, and their associated marginal
costs are cn, n = 1, ..., N.  Of course, any
decision maker would exclusively choose the
least-cost technology.  All other decision
makers would also choose this least-cost
option, and all other options would be
excluded from any market share.  However,
in reality, all (or almost all) technologies will
have some partial share of the market, and
these shares will change with time as the
various costs change. 

Consider a state or region with many energy
suppliers, each facing a unique set of costs. 
Each supplier chooses the technology which
is least cost to him in some sense.  Implied
here is that cost itself, while an important
consideration, may not be the only variable
which determines choice for any particular
supplier.  Also, a supplier may have some
singular situation where the actual cost of a
technology to him is not the same as the cost
to other suppliers.  In the aggregate set of
costs to all suppliers, each technology has a
distribution of costs instead of one fixed
cost.  If these distributions are broad enough
to overlap, it is possible that all technologies
will be chosen to some degree.

Let an be the market share of the n-th
technology.  The sum of the shares must be
unity; that is

Σ an = 1,

where the sum is from 1 to N.  Since each supplier
will choose the least cost (to him) option, the
market share, an, for each option is the probability
that the option has a lower cost than any of the
competing options.  The market share for the first
option is

    ∞        ∞         
         ∞

a1 = ∫   du1   ∫   du2  • • •  ∫   duN f (u),
    0         u1         

        u1

where un is the distributed cost of the n-th
technology, f(u)du is the joint probability that the
cost is in the region du about u, and du = du1du2 •
• • duN.  Since the order of technologies is
arbitrary, solution for a1 is equivalent to solution
for all shares. 

Theoretically, we can create a
joint probability density
function for the technologies and
perform the multiple integration
above.  In practice, however,
this is a difficult task for an
arbitrary joint probability
density function.  To simplify
the integrations, a joint Weibull
distribution is used; that is,

f(u) = Π (γ/Cn) (un/cn) 
γ-1exp[-(un/cn)

γ], (cn > 0).

The product (Π) is over the N choices.  The
parameter γ determines (inversely) the broadness
of the distribution, and cn is related to the average
cost of the n-th technology.  For a single variable,
the Weibull density function translated to the
positive domain.  As γ increases, the width of the
density narrows and becomes more gaussian in
shape. 

Let δn be the average cost of the n-th technology. 
We get



81

∞
δn = ∫  dun un (γ/cn)(un/cn)

γ-1exp[-(un/cn)
γ].

0

The integration yields

δn = cn Γ (1 + 1/γ),

where Γ is the Gamma function.  As γ
becomes large, the distribution become more
peaked and the average cost, δn, approaches
cn, since Γ(1) = 1.  The variance of the cost
is given by

υn = cn
2[Γ(1 + 2/γ) - Γ 

2(1 + 1/γ)].

For γ = 10, the standard deviation is

δn(γ = 10) = 0.114457 cn,

that is, the one standard deviation band is
±11.4% about cn.

We define the intermediate result

      ∞
hn  =  ∫   dun (γ/cn)(un/cn)

γ-1exp[-(un/cn)
γ] =

exp[-(u1/cn)
γ].

       u1

Expressing the joint probability density
function of technology costs as a Weibull
distribution, interchanging integration order,
and using the intermediate result in the
evaluation of the market share gives

 ∞
a1  =  ∫   du1(γ/c1) (u1/c1)

γ-1hn = c1
-γ/Σ(cn

-γ).
 0

This is the logit function for market share of
the “first” technology.  The market share for
the

m-th technology is obtained by replacing c1 with cm

above.  We repeat that cn approaches the average
value of the n-th technology’s cost as γ approaches
infinity.  The approach is quite rapid.  For
example, Γ (1+1/10) = 0.951.  Also, the standard
deviation approaches zero as γ goes to infinity. 

The logit formulation described here is a special
form of a more general logit describes in [Ben-
Akiva, 1985].  The more general formulation
assumes that the costs are drawn from a Gumbel
distribution.  The special formulation assumes that
the random costs obey the Gumbel distribution,
with a utility function which is the logarithm of the
cost, yielding the Weibull distribution.
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APPENDIX F.  Summary from
Evaluation of Tools for Renewable

Energy
Policy Analysis:  The Ten Federal

Region Model, April 1994

Summary of Findings

The TFRM is an appropriate and
valuable tool for conducting
energy policy analyses of
renewable energy scenarios. 
In its current form, the model
requires a user who has
invested considerable time in
learning about model
operation.  The panel feels
that with moderate effort, the
model could be made
substantially more user-
friendly.  This effort
includes both streamlining and
developing menus of the input
procedures, as well as
providing more comprehensive
displays and post-processor
interpretation of the outputs.

Intended Applications

TFRM was build to provide relatively quick
turnaround results for an analyst who wants
to conduct a somewhat detailed study of the
impacts of renewables on a specific set of
federal regions. 

The evaluation panel feels
that the TRFM provides a new
kind of model that is intended
to deal with renewable energy
technologies in the context of
regional electric systems. 
Some of the renewable energy
issues that can be

investigated include the effects
of capital cost and operating
cost improvements, renewable tax
incentives, fossil tax
disincentives, efficiency
improvements, regional variations
in performances and site
availability, competition between
renewables, and other policies
and issues.

The panel feels that the greatest value for this
model is in the mid-to-far term.  It will require
some costs to develop, refine, test, maintain and
make it into a user-friendly tool that will be
accessible to a wide community of analysts.  The
TFRM is dependent upon the quality of input data,
support analysis from overview models (such as
the PERI REP model), and the familiarity of the
user with the constraints and requirements of the
model.  The panel feels the limitations of TFRM
will lessen in time, if additional work is conducted
to improve the elements and usability of the
model.

Structure

The structure of the TFRM was somewhat
dictated by the initial assumption that a relatively
quick turnaround regional model was needed to
investigate the impacts of renewable energy
technologies on the electric supply sectors. 
Feedbacks of cost energy to change the level of
demand, and other feedback relations, must be
accomplished by the user in out-of-model
feasibility checks, output-to-input calculations, and
additional scenarios.  Occasionally, some model
results are dictated by constraints and ratios, such
as with renewable growth rates of 20 percent per
year for attractive technologies.  For the most
part, however, the non-linear optimal search of the
TFRM leaves most variables in the active basis and
is much less directed by constraints than linear
programming or other dynamically solved
methods.
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Several features of the model
(e.g., the capacity expansion,
dispatching, and especially
the renewables areas) employ
methods that differ from
previous modeling approaches
and are very creative and
innovative in nature.  The
major advantage to having a
different methodology is that
it may offer new insights. 
The disadvantage is a public
relations problem in educating
analysts about the uses and
applicability of the new
methodology.

One major concern of the panel was the way
in which the renewable space was searched
to find an optimum allocation of available
renewables.  The concern is that the whole
economic and policy space be searched. 
Although it is a little hard to determine from
the documentation, it appears as if the search
is beginning at the origin, or the zero use of
renewables point.  If the model then settles in
any local optimum, it will probably be in the
vicinity of the start of the search, and this
would bias against the use of renewables.

Demand

Demand modeling requires close
attention from the user; it is
entirely exogenous. 
Conservation, independent
producers, and demand-side
management effects must all be
backed out of the load seen by
the electric system.  Without
this attention, the model will
obviously bias in favor of
supply-side solutions,
including renewables.  A
helpful addition here might be
to use a post-processor to

generate the demands that would
be consistent with costs of
electricity in various years. 
The user could then immediately
see if changes in demand inputs
were necessary.  There is also
some concern about the accuracy
with which demand seasonality is
modeled and the way that
correlations are missed with
seasonal fuel cost variations and
seasonal renewable performance
variations.

Capacity Expansion

The capacity expansion offers a very creative,
alternative approach to other methodologies.  It
incorporates renewable resource depletion.  It is
well documented and has been validated against
the Electric Generation Expansion Analysis
Systems (EGEAS), a widely used electric industry
expansion tool.5  

Regional models are, however, difficult to validate
against reality.  The gap method, in particular,
needs additional documentation, especially with
regard to its problems:  occasionally choosing
uneconomic technologies, periods if
disequilibrium, and biases.  Repowering, especially
repowering with combined cycles, also needs to be
offered as an alternative to retirement.

Reliability

The conceptual approach to reliability in TFRM is
an important improvement over the full-
capacity/no capacity credit approaches that some
other models use for intermittent renewable energy
technologies.  There are, however, some issues
and weaknesses that require investigation.  The
use of intermittent renewables as negative loads
makes some reliability and reserve issues more
difficult to study.  This treatment also does not
account for forced outages as a function of unit
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size or correlation of renewable energy
productions.

The biases are difficult to sort out.  Not
accounting for some renewable technology
reliability problems would tend to
overestimate the use of renewables. 
However, biases toward lower reserve
margins and lack of unit-size outage
considerations would bias against
renewables.

Dispatch

The dispatch logic of the TFRM is a
traditional, deterministic, merit order
dispatch.  It seems to fit the renewables’
needs impressively, and reacts properly to
many different sensitivity tests.

It seems clear that with the national
screening objective, the TFRM has to
operate on regions (10 versus 13 regions is a
debatable issue).  And with regional
modeling, it seems appropriate to use a
deterministic technique, rather than a
laborious probabilistic method.

The modelers are to commended for testing
their dispatching model against a Booth-
Baleriaux probabilistic method and against a
Lilienthal probabilistic method.6  The method
used in the TFRM consistently
underestimates energy displacement from gas
turbines.7  Based upon a November 15, 993,
briefing by Sandia staff, the TFRM method
underestimates these peaking energies
displaced by wind and photovoltaics by a
factor of 4 to 6.  The approximation used
probably is a little crude at the peak
upswings.  The quantities and costs are small
(about 2 percent), but still worth concern if
storage or peaking renewables are being
modeled, or if there is a significant quantity

of renewables.  The bias here is toward the used of
more gas turbines, and less attractive renewables. 

It is clear that with a substantial amount of
intermittent renewable capacity, such as wind and
solar, that a system or region might need more
than th usual 7 percent spinning reserve.  The right
value may even be as high as 15 to 20 percent.  In
order that the spinning reserve be tied to the
renewable capacity decision, it might be necessary
to construct renewable turbine hybrids or
renewable storage hybrids.

The TFRM results are often
tightly constrained by operating
and capacity assumptions.  The
operator must be aware of
pressures and strains within the
model.  For this reason, it seems
very important that the model
output routinely print capacity
factors (or percentage operating
levels), cost of electricity, and
other outputs that will make it
easier for the user to make
exogenous feedbacks.

Storage

In the comparison of the TFRM with EGEAS, the
TRFM builds about 80 percent more pumped
storage in the year 2006, but is about 10 percent
lower by the 2012.  This should be considered to
be a bias in favor of building storage in the near
term.

Storage may not be an important
issue to correct if the questions
revolve around renewables. 
However, there are two
indications from the storage
model run that storage may not be
handled properly in the model. 
With the used of storage, the
decrease in the use of baseload
coal is counterintuitive, as is
the increase, especially of the
parking gas turbines.  The
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modelers have looked at this
and determined that this
behavior is appropriate since,
given the numbers in the trial
run, coal is competitive with
combined cycle at capacity
factors as low as 25 percent.
 Hydro- storage is added in
the storage scenario that was
run, but the cumulative
capital costs and the
cumulative operating costs are
higher, leading to some
question about why it was
built.  The explanation for
this problem seems to come
from the fact that, although
not optimal in the current
year, storage is economic in
the long-term average.  It is
impressive that the model can
capture such subtle concepts.

Transmission

TFRM has no real transmission modeling
capability.  It is recommended that this
model incorporate a technique similar to that
used by the REP model.   Its simulations
look reasonable and appear to be consistent
with areas where there are good data, such
as California.

Finances

The model incorporates
technological and financial
risks in a rudimentary way. 
Models that do not include
these risks at all are likely
to miss the main issue
involved in the selection of
renewables.  Risk-less models
will overestimate the use of
renewables, and so TFRM has

much greater accuracy in this
area.

However, the model does not take
into account the varying cost of
capital by utility type, private
or public.  Some of the financial
risks of new technologies are not
accounted for, as they are in the
REP model.  A better study of the
value of gamma (the cost
diversity parameter γ) would be
helpful.  It appears that the
TFRM results are in nominal
dollars,  but this requires
further  check-
ing into the dollars and the
accounting.
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Environmental Concerns

The TRFM does an excellent job in modeling
the effects of the various carbon tax
possibilities.  On other environmental issues,
however, the model may have some
difficulties.  One such area is that the total
sulfur ceilings of the Clean Air Act can be
exceeded in the model.  These would
probably have to be modeled with surrogate
sulfur taxes, which would have to be
adjusted until the sulfur caps were met.

Another untreated issue is the
total life-cycle carbon
implicit in the construction
of facilities, although the
carbon implicit in the
production of fuels was
accounted for in the trial
runs.  National carbon-
limiting scenarios would have
to take account of these
implicit carbon emissions. 
The costs of materials and
fuels would also go up with
carbon taxes.  This is a data
problem rather than a
methodological problem.

Additional untreated issues include land use,
aesthetics, habitat destruction, and many
other issues which are not amenable to a
national modeling methodology.  Values or
proxy values must be generated before such
externalities could be analyzed.

It is difficult to approximate the bias
involved in not treating these environmental
issues.  Not including regional or nation
sulfur caps would bias against renewables. 
Life-cycle carbon accounting would probably
bias slightly in favor of existing units.  Land
use, aesthetics, and habitat concerns might
bias against renewables.

Usability

The temptation seems to be to make the TFRM
act like an exact utility planning model, such as
EGEAS.  There are several reasons why this
would not be the ideal model.  First, EGEAS, and
other more detailed utility capacity planning
models, were developed to suggest the next
optimal unit to add to a system.  Putting together
a whole string of such next optimal units and
adding the other utilities in a region would not
provide a good predictor of the future of that
region.  It would be knife-edge in its selection of
generation types, that is, all of one kind.  It would
not capture the risks, financial or technical, or the
fuel diversity which is another important risk
hedge used by utility planners.  In short, a more
statistical approach will do a far better job of
forecasting regional capacity planning.  TFRM
incorporates those more statistical techniques. 
Not only would the addition of individual utilities
and individual units be the wrong direction for
FTRM to take, but it would make the model
unusable for simulations of regions or the United
States. 
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